Recommendation Method for Attractive Destinations for Individual Tourists Using Profile Data

Minghao Li, Jun Sasaki
{"title":"Recommendation Method for Attractive Destinations for Individual Tourists Using Profile Data","authors":"Minghao Li, Jun Sasaki","doi":"10.1109/PIC53636.2021.9687061","DOIUrl":null,"url":null,"abstract":"Personalized tours have become popular worldwide. However, it is not easy to recommend destinations that are appropriate for individual tourists. This study examines a highly accurate recommendation method using two indexes: an objective index that judges the adaptability between a tourist’s profile and a destination; and a subjective index that judges attractiveness for the tourist. We tested the method using data from tourism websites and a questionnaire survey. We found that the method was effective in identifying adaptive and attractive tourist groups for well-known destinations in Iwate Prefecture, Japan.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Personalized tours have become popular worldwide. However, it is not easy to recommend destinations that are appropriate for individual tourists. This study examines a highly accurate recommendation method using two indexes: an objective index that judges the adaptability between a tourist’s profile and a destination; and a subjective index that judges attractiveness for the tourist. We tested the method using data from tourism websites and a questionnaire survey. We found that the method was effective in identifying adaptive and attractive tourist groups for well-known destinations in Iwate Prefecture, Japan.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于个人资料的个性化旅游目的地推荐方法
个性化旅游已经在世界范围内流行起来。然而,推荐适合散客的目的地并不容易。本文研究了一种使用两个指标的高精度推荐方法:一个是客观指标,用来判断游客形象与目的地之间的适应性;以及评判游客吸引力的主观指数。我们使用旅游网站的数据和问卷调查来检验该方法。我们发现该方法在日本岩手县的知名目的地识别适应性和吸引力的旅游群体是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Construction of Learning Diagnosis and Resources Recommendation System Based on Knowledge Graph Classification of Masonry Bricks Using Convolutional Neural Networks – a Case Study in a University-Industry Collaboration Project Optimal Scale Combinations Selection for Incomplete Generalized Multi-scale Decision Systems Application of Improved YOLOV4 in Intelligent Driving Scenarios Research on Hierarchical Clustering Undersampling and Random Forest Fusion Classification Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1