Wei Tang, Y. Chen, Jiaqing Zhao, S. Chen, L. Feng, X. Guo
{"title":"Inkjet printing narrow fine Ag lines on surface modified polymeric films","authors":"Wei Tang, Y. Chen, Jiaqing Zhao, S. Chen, L. Feng, X. Guo","doi":"10.1109/NEMS.2013.6559929","DOIUrl":null,"url":null,"abstract":"In the paper, we have demonstrated a simple but effective method to inkjet print fine Ag conductive lines with improved resolution on polymeric films. This is achieved by forming an ultra-flat polymeric film and modifying its surface energy. As a result, narrow Ag lines (<; 50 μm) and short gaps (~10 μm) were successfully achieved using optimized printing parameters. Meanwhile these formed Ag lines show fine morphology, smooth surface and high electrical conductivity. The improved resolution is attributed to the reduced spreading of ink droplets on the surface modified substrate. This method shows the potential of directly producing high-resolution electrodes for printed electronics applications.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In the paper, we have demonstrated a simple but effective method to inkjet print fine Ag conductive lines with improved resolution on polymeric films. This is achieved by forming an ultra-flat polymeric film and modifying its surface energy. As a result, narrow Ag lines (<; 50 μm) and short gaps (~10 μm) were successfully achieved using optimized printing parameters. Meanwhile these formed Ag lines show fine morphology, smooth surface and high electrical conductivity. The improved resolution is attributed to the reduced spreading of ink droplets on the surface modified substrate. This method shows the potential of directly producing high-resolution electrodes for printed electronics applications.