A Comparison of PSO-Based Informative Path Planners for Autonomous Surface Vehicles for Water Resource Monitoring

Micaela Jara Ten Kathen, Isabel Jurado Flores, Daniel Gutiérrez-Reina
{"title":"A Comparison of PSO-Based Informative Path Planners for Autonomous Surface Vehicles for Water Resource Monitoring","authors":"Micaela Jara Ten Kathen, Isabel Jurado Flores, Daniel Gutiérrez-Reina","doi":"10.1145/3529399.3529442","DOIUrl":null,"url":null,"abstract":"Preserving water resources is an objective that is constantly being pursued. Monitoring the aquatic environments is an action to fulfill this objective, since the state of the water quality will be controlled. The monitoring task can be carried out with Autonomous Surface Vehicles equipped with sensors that measure water quality parameters and with a monitoring system. This paper presents a comparison between informative path planners based on PSO for autonomous surface vehicles for water resources monitoring. The case presented is the case of Ypacarai Lake. The simulations carried out allow visualizing and comparing the response of different methods. The methods evaluated are the Local Best method, the Global Best method, the Uncertainty method, the Contamination method, the Classic PSO, Enhanced GP-based PSO, and the Epsilon Greedy method. For the optimization of the Enhanced GP-based PSO coefficients, Bayesian optimization is selected. The results show that the Enhanced GP-based PSO is the algorithm with the best solutions for monitoring the lake environment.","PeriodicalId":149111,"journal":{"name":"International Conference on Machine Learning Technologies","volume":"517 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529399.3529442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Preserving water resources is an objective that is constantly being pursued. Monitoring the aquatic environments is an action to fulfill this objective, since the state of the water quality will be controlled. The monitoring task can be carried out with Autonomous Surface Vehicles equipped with sensors that measure water quality parameters and with a monitoring system. This paper presents a comparison between informative path planners based on PSO for autonomous surface vehicles for water resources monitoring. The case presented is the case of Ypacarai Lake. The simulations carried out allow visualizing and comparing the response of different methods. The methods evaluated are the Local Best method, the Global Best method, the Uncertainty method, the Contamination method, the Classic PSO, Enhanced GP-based PSO, and the Epsilon Greedy method. For the optimization of the Enhanced GP-based PSO coefficients, Bayesian optimization is selected. The results show that the Enhanced GP-based PSO is the algorithm with the best solutions for monitoring the lake environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于pso的自动水面车辆水资源监测信息路径规划比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the FixMatch Semi-Supervised Algorithm for Unbalanced Image Data A Comparison of PSO-Based Informative Path Planners for Autonomous Surface Vehicles for Water Resource Monitoring Dynamic User-Centric Clustered Workplaces for COVID-19 Control Measures Based on Geofencing and Deep Learning Graph-based Similarity for Document Retrieval in the Biomedical Domain Prediction of Cryptocurrency Price Dynamics with Multiple Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1