Thick Folding Through Regionally-Sandwiched Compliant Sheets

Jared Butler, Nathan A. Pehrson, S. Magleby
{"title":"Thick Folding Through Regionally-Sandwiched Compliant Sheets","authors":"Jared Butler, Nathan A. Pehrson, S. Magleby","doi":"10.1115/detc2019-97899","DOIUrl":null,"url":null,"abstract":"\n The regional-sandwiching of compliant sheets (ReCS) technique presented in this work creates flat-foldable, rigid-foldable, and self-deploying thick origami-based mechanisms. Regional-sandwiching of the compliant sheet is used to create mountain/valley assignments for each fold about a vertex, constraining motion to a single branch of folding. Strain energy in deflected flexible members is used to enable self-deployment. This work presents the methods to design origami-based mechanisms using the ReCS technique, including volume trimming at the vertex of the compliant sheet and of the panels used in the sandwich. Physical models of a simple single fold mechanism and a degree-four vertex mechanism are presented to demonstrate the ReCS technique using acrylic panels and spring steel. Consideration is given to the risk of yielding of the compliant sheet due to parasitic motion with possible mitigation of yielding by decreasing the thickness of the sheet.","PeriodicalId":211780,"journal":{"name":"Volume 5B: 43rd Mechanisms and Robotics Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The regional-sandwiching of compliant sheets (ReCS) technique presented in this work creates flat-foldable, rigid-foldable, and self-deploying thick origami-based mechanisms. Regional-sandwiching of the compliant sheet is used to create mountain/valley assignments for each fold about a vertex, constraining motion to a single branch of folding. Strain energy in deflected flexible members is used to enable self-deployment. This work presents the methods to design origami-based mechanisms using the ReCS technique, including volume trimming at the vertex of the compliant sheet and of the panels used in the sandwich. Physical models of a simple single fold mechanism and a degree-four vertex mechanism are presented to demonstrate the ReCS technique using acrylic panels and spring steel. Consideration is given to the risk of yielding of the compliant sheet due to parasitic motion with possible mitigation of yielding by decreasing the thickness of the sheet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
厚折叠通过区域夹心柔性片
在这项工作中提出的柔性片的区域夹心(ReCS)技术创造了可平折、刚性可折叠和自展开的厚折纸机制。柔性薄片的区域夹心用于为每个顶点的折叠创建山/谷分配,将运动限制在单个折叠分支上。挠曲柔性构件中的应变能用于实现自展开。这项工作提出了使用ReCS技术设计折纸机制的方法,包括在柔性薄片和夹层中使用的面板的顶点处进行体积修剪。给出了简单单折机构和四度顶点机构的物理模型,以证明采用亚克力板和弹簧钢的ReCS技术。考虑了由于寄生运动而产生的柔性薄板的屈服风险,并通过减小薄板的厚度来减小屈服的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing and Manufacturing a Super Excellent and Ultra-Cheap Energy Absorber by Origami Engineering Exploiting the Asymmetric Energy Barrier in Multi-Stable Origami to Enable Mechanical Diode Behavior in Compression Thick Folding Through Regionally-Sandwiched Compliant Sheets Synthesis of Stephenson III Timed Curve Generators Using a Probabilistic Continuation Method Deflection Maps of Elastic Catenary Cable-Driven Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1