{"title":"A research attempt to predict and model personalities through users' social media details","authors":"Muskan Goyal, Prachi Tawde","doi":"10.1109/IBSSC56953.2022.10037272","DOIUrl":null,"url":null,"abstract":"Users of products and services, as human beings have a wide range of personalities. This is being experienced right from the initial days of e-commerce and m-commerce in India. In this research an attempt has been made to predict personalities using MBTI (Myers Briggs Type Indicator) based approach making use of natural language based processing, machine learning and transformer based modelling. As each human being is unique and exhibits different personality trait, therefore it is impractical to offer a generalized treatment for all users. But it is possible to categorize individuals, in terms of their defining characteristics based on MBTI based approach, which groups personalities/users into 16 groups and thus helps in predicting personalities. In this study authors made an attempt to extract social media based information of users through their accounts to characterize users into one of the 16 MBTI personality types. For this prediction and modelling, authors made use of pre-processed data from Kaggle, which was then fed into the transformer for modelling/processing. Based on the information it gets, like comments, post captions, reviews, etc., the transformer is fine-tuned to predict the user's personality. The required qualities of the model were taken into account while coding the transformer's parameters. Additionally, an attempt is also made to compare the outcomes of two trained transformer models. Authors report that the prediction accuracy of their modelling as 64%, outperforming all other models used. The testing data had a 76% precision.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Users of products and services, as human beings have a wide range of personalities. This is being experienced right from the initial days of e-commerce and m-commerce in India. In this research an attempt has been made to predict personalities using MBTI (Myers Briggs Type Indicator) based approach making use of natural language based processing, machine learning and transformer based modelling. As each human being is unique and exhibits different personality trait, therefore it is impractical to offer a generalized treatment for all users. But it is possible to categorize individuals, in terms of their defining characteristics based on MBTI based approach, which groups personalities/users into 16 groups and thus helps in predicting personalities. In this study authors made an attempt to extract social media based information of users through their accounts to characterize users into one of the 16 MBTI personality types. For this prediction and modelling, authors made use of pre-processed data from Kaggle, which was then fed into the transformer for modelling/processing. Based on the information it gets, like comments, post captions, reviews, etc., the transformer is fine-tuned to predict the user's personality. The required qualities of the model were taken into account while coding the transformer's parameters. Additionally, an attempt is also made to compare the outcomes of two trained transformer models. Authors report that the prediction accuracy of their modelling as 64%, outperforming all other models used. The testing data had a 76% precision.
产品和服务的使用者,如同人类一样,有着广泛的个性。这种情况从印度电子商务和移动商务的最初几天就开始了。在这项研究中,利用基于自然语言的处理、机器学习和基于变压器的建模,尝试使用MBTI (Myers Briggs Type Indicator)方法来预测性格。由于每个人都是独特的,表现出不同的个性特征,因此对所有用户提供通用的治疗是不切实际的。但是,根据MBTI的定义特征对个体进行分类是可能的,MBTI将个性/用户分为16组,从而有助于预测个性。在这项研究中,作者试图通过用户的账户提取基于社交媒体的用户信息,将用户定性为16种MBTI人格类型之一。为了进行预测和建模,作者使用了Kaggle的预处理数据,然后将其输入变压器进行建模/处理。根据它获得的信息,比如评论、帖子标题、评论等,转换器会进行微调,以预测用户的个性。在对变压器参数进行编码时,考虑了模型的质量要求。此外,还尝试比较两种训练后的变压器模型的结果。作者报告说,他们的模型的预测精度为64%,优于所有其他使用的模型。测试数据的精确度为76%。