Carrier-Sense Multiple Access for Heterogeneous Wireless Networks Using Deep Reinforcement Learning

Yiding Yu, S. Liew, Taotao Wang
{"title":"Carrier-Sense Multiple Access for Heterogeneous Wireless Networks Using Deep Reinforcement Learning","authors":"Yiding Yu, S. Liew, Taotao Wang","doi":"10.1109/WCNCW.2019.8902705","DOIUrl":null,"url":null,"abstract":"This paper investigates a new class of carrier-sense multiple access (CSMA) protocols that employ deep reinforcement learning (DRL) techniques for heterogeneous wireless networking, referred to as carrier-sense deep-reinforcement learning multiple access (CS-DLMA). Existing CSMA protocols, such as the medium access control (MAC) of WiFi, are designed for a homogeneous network environment in which all nodes adopt the same protocol. Such protocols suffer from severe performance degradation in a heterogeneous environment where there are nodes adopting other MAC protocols. This paper shows that DRL techniques can be used to design efficient MAC protocols for heterogeneous networking. In particular, in a heterogeneous environment with nodes adopting different MAC protocols (e.g., CS-DLMA, TDMA, and ALOHA), a CS-DLMA node can learn to maximize the sum throughput of all nodes. Furthermore, compared with WiFi’s CSMA, CS-DLMA can achieve both higher sum throughput and individual throughputs when co-existing with other MAC protocols. Last but not least, a salient feature of CS-DLMA is that it does not need to know the operating mechanisms of the co-existing MACs. Neither does it need to know the number of nodes using these other MACs.","PeriodicalId":121352,"journal":{"name":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2019.8902705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper investigates a new class of carrier-sense multiple access (CSMA) protocols that employ deep reinforcement learning (DRL) techniques for heterogeneous wireless networking, referred to as carrier-sense deep-reinforcement learning multiple access (CS-DLMA). Existing CSMA protocols, such as the medium access control (MAC) of WiFi, are designed for a homogeneous network environment in which all nodes adopt the same protocol. Such protocols suffer from severe performance degradation in a heterogeneous environment where there are nodes adopting other MAC protocols. This paper shows that DRL techniques can be used to design efficient MAC protocols for heterogeneous networking. In particular, in a heterogeneous environment with nodes adopting different MAC protocols (e.g., CS-DLMA, TDMA, and ALOHA), a CS-DLMA node can learn to maximize the sum throughput of all nodes. Furthermore, compared with WiFi’s CSMA, CS-DLMA can achieve both higher sum throughput and individual throughputs when co-existing with other MAC protocols. Last but not least, a salient feature of CS-DLMA is that it does not need to know the operating mechanisms of the co-existing MACs. Neither does it need to know the number of nodes using these other MACs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的异构无线网络载波感知多址接入
本文研究了一类新的载波感知多址(CSMA)协议,该协议采用深度强化学习(DRL)技术用于异构无线网络,称为载波感知深度强化学习多址(CS-DLMA)。现有的CSMA协议,如WiFi的介质访问控制(MAC),是针对所有节点采用相同协议的同构网络环境而设计的。这种协议在异构环境中会遭受严重的性能下降,因为存在采用其他MAC协议的节点。本文表明,DRL技术可以用于设计高效的异构网络MAC协议。特别是在节点采用不同MAC协议(如CS-DLMA、TDMA和ALOHA)的异构环境中,CS-DLMA节点可以学习使所有节点的吞吐量总和最大化。此外,与WiFi的CSMA相比,CS-DLMA在与其他MAC协议共存时可以实现更高的总吞吐量和单个吞吐量。最后但并非最不重要的是,CS-DLMA的一个显著特征是它不需要知道共存mac的操作机制。它也不需要知道使用这些其他mac的节点数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Edge and Fog Computing Platform for Effective Deployment of 360 Video Applications On the Fundamental Queue Analysis for Relay-assisted Two-stage Communication Networks Generalized JSDM with Enhanced Interference Management for Massive MIMO Systems Experimental Performance Evaluation of Improved Energy Detection under Noise Uncertainty in Low SNR Regime Energy Minimization of Delay-Constrained Offloading in Vehicular Edge Computing Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1