Unordered tree mining with applications to phylogeny

D. Shasha, J. Wang, Sen Zhang
{"title":"Unordered tree mining with applications to phylogeny","authors":"D. Shasha, J. Wang, Sen Zhang","doi":"10.1109/ICDE.2004.1320039","DOIUrl":null,"url":null,"abstract":"Frequent structure mining (FSM) aims to discover and extract patterns frequently occurring in structural data, such as trees and graphs. FSM finds many applications in bioinformatics, XML processing, Web log analysis, and so on. We present a new FSM technique for finding patterns in rooted unordered labeled trees. The patterns of interest are cousin pairs in these trees. A cousin pair is a pair of nodes sharing the same parent, the same grandparent, or the same great-grandparent, etc. Given a tree T, our algorithm finds all interesting cousin pairs of T in O(|T|/sup 2/) time where |T| is the number of nodes in T. Experimental results on synthetic data and phylogenies show the scalability and effectiveness of the proposed technique. To demonstrate the usefulness of our approach, we discuss its applications to locating co-occurring patterns in multiple evolutionary trees, evaluating the consensus of equally parsimonious trees, and finding kernel trees of groups of phylogenies. We also describe extensions of our algorithms for undirected acyclic graphs (or free trees).","PeriodicalId":358862,"journal":{"name":"Proceedings. 20th International Conference on Data Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 20th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2004.1320039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

Frequent structure mining (FSM) aims to discover and extract patterns frequently occurring in structural data, such as trees and graphs. FSM finds many applications in bioinformatics, XML processing, Web log analysis, and so on. We present a new FSM technique for finding patterns in rooted unordered labeled trees. The patterns of interest are cousin pairs in these trees. A cousin pair is a pair of nodes sharing the same parent, the same grandparent, or the same great-grandparent, etc. Given a tree T, our algorithm finds all interesting cousin pairs of T in O(|T|/sup 2/) time where |T| is the number of nodes in T. Experimental results on synthetic data and phylogenies show the scalability and effectiveness of the proposed technique. To demonstrate the usefulness of our approach, we discuss its applications to locating co-occurring patterns in multiple evolutionary trees, evaluating the consensus of equally parsimonious trees, and finding kernel trees of groups of phylogenies. We also describe extensions of our algorithms for undirected acyclic graphs (or free trees).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无序树挖掘及其在系统发育中的应用
频繁结构挖掘(FSM)旨在发现和提取结构数据中频繁出现的模式,如树和图。FSM在生物信息学、XML处理、Web日志分析等方面有很多应用。提出了一种新的FSM技术,用于在有根的无序标记树中寻找模式。感兴趣的模式是这些树中的表兄弟对。表亲对是一对节点共享相同的父节点、相同的祖父母节点或相同的曾祖父母节点等。给定树T,我们的算法在O(|T|/sup 2/)时间内找到T的所有有趣的表兄弟对,其中|T|是T中的节点数。在合成数据和系统发育上的实验结果表明了该技术的可扩展性和有效性。为了证明我们的方法的有效性,我们讨论了它在多个进化树中定位共同发生模式的应用,评估同等简约树的一致性,以及寻找系统发生群的核树。我们还描述了对无向无环图(或自由树)算法的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ContextMetrics/sup /spl trade//: semantic and syntactic interoperability in cross-border trading systems EShopMonitor: a Web content monitoring tool A probabilistic approach to metasearching with adaptive probing Simple, robust and highly concurrent b-trees with node deletion Substructure clustering on sequential 3d object datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1