Extracting High Definition Map Information from Aerial Images

Guan-Wen Chen, Hsueh-Yi Lai, Tsì-Uí İk
{"title":"Extracting High Definition Map Information from Aerial Images","authors":"Guan-Wen Chen, Hsueh-Yi Lai, Tsì-Uí İk","doi":"10.1145/3547276.3548442","DOIUrl":null,"url":null,"abstract":"Compared with traditional digital maps, high definition maps (HD maps) collect information in lane-level instead of road-level, and provide more diverse and detailed road network information, including lane markings, speed limits, rules, and intersection junction. HD maps can be used for driving navigation and autonomous driving cars with high-precision information to improve driving safety. However, it takes a lot of time to construct the HD map, so that the HD map cannot be widely used in applications at present. This paper proposes a method to identify road information through semantic image segmentation algorithm from aerial traffic images, and then convert it into the open source HD map standard format, which is OpenDRIVE. Through experiments, 13 categories of lane markings can be identified with mIoU of 84.3% and mPA of 89.6%.","PeriodicalId":255540,"journal":{"name":"Workshop Proceedings of the 51st International Conference on Parallel Processing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3547276.3548442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compared with traditional digital maps, high definition maps (HD maps) collect information in lane-level instead of road-level, and provide more diverse and detailed road network information, including lane markings, speed limits, rules, and intersection junction. HD maps can be used for driving navigation and autonomous driving cars with high-precision information to improve driving safety. However, it takes a lot of time to construct the HD map, so that the HD map cannot be widely used in applications at present. This paper proposes a method to identify road information through semantic image segmentation algorithm from aerial traffic images, and then convert it into the open source HD map standard format, which is OpenDRIVE. Through experiments, 13 categories of lane markings can be identified with mIoU of 84.3% and mPA of 89.6%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从航拍图像中提取高清地图信息
与传统的数字地图相比,高清地图在车道层面而不是道路层面收集信息,提供更多样化和详细的道路网络信息,包括车道标记、限速、规则、十字路口等。高清地图可以用于驾驶导航和高精度信息的自动驾驶汽车,以提高驾驶安全性。但是,由于构建高清地图需要耗费大量的时间,使得高清地图目前还不能在应用中得到广泛应用。本文提出了一种通过语义图像分割算法从航空交通图像中识别道路信息,并将其转换为开源高清地图标准格式opdrive的方法。通过实验,可以识别出13类车道标记,mIoU为84.3%,mPA为89.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Software/Hardware Co-design Local Irregular Sparsity Method for Accelerating CNNs on FPGA A Fast and Secure AKA Protocol for B5G Execution Flow Aware Profiling for ROS-based Autonomous Vehicle Software A User-Based Bike Return Algorithm for Docked Bike Sharing Systems Extracting High Definition Map Information from Aerial Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1