{"title":"Phase-Field Model-Based Simulation of Motions of a Two-Phase Fluid on Solid Surface","authors":"N. Takada, J. Matsumoto, S. Matsumoto","doi":"10.1299/JCST.7.322","DOIUrl":null,"url":null,"abstract":"A preliminary numerical simulation of the microscopic two-phase fluid motion on a solid surface was conducted using an interface-tracking method based on the phase-field model (PFM). Two variations of the lattice Boltzmann method (LBM) based on fictitious particle kinematics are proposed for solving diffuse-interface advection equations which were revised to improve volume-of-fluid conservation in the PFM simulations. The major findings are as follows: (1) the interface-tracking method accurately predicted the capillary force effect on dynamic two-phase fluid systems with a high density ratio between parallel plates; (2) the initial shape and volume of the two-phase fluid were retained adequately in linear translation with the use of the LBMs. These results proved that the PFM-based method and the LBM-based advection schemes can be used for simulating two-phase fluid motions in various macroand microfluidics problems for devices, machineries and higher-throughput microdevice fabrication processes.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.7.322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
A preliminary numerical simulation of the microscopic two-phase fluid motion on a solid surface was conducted using an interface-tracking method based on the phase-field model (PFM). Two variations of the lattice Boltzmann method (LBM) based on fictitious particle kinematics are proposed for solving diffuse-interface advection equations which were revised to improve volume-of-fluid conservation in the PFM simulations. The major findings are as follows: (1) the interface-tracking method accurately predicted the capillary force effect on dynamic two-phase fluid systems with a high density ratio between parallel plates; (2) the initial shape and volume of the two-phase fluid were retained adequately in linear translation with the use of the LBMs. These results proved that the PFM-based method and the LBM-based advection schemes can be used for simulating two-phase fluid motions in various macroand microfluidics problems for devices, machineries and higher-throughput microdevice fabrication processes.