Closed-loop Individual-specific EEG Neurofeedback for Emotion Regulation

Xiaotong Liu, Jiayuan Zhao, Siyu Wang, Guangying Pei, S. Funahashi, Tianyi Yan
{"title":"Closed-loop Individual-specific EEG Neurofeedback for Emotion Regulation","authors":"Xiaotong Liu, Jiayuan Zhao, Siyu Wang, Guangying Pei, S. Funahashi, Tianyi Yan","doi":"10.1109/ICARCE55724.2022.10046573","DOIUrl":null,"url":null,"abstract":"Individual difference is the main factor affecting the effect of emotion regulation neurofeedback training. An individual-specific emotion recognition model can be constructed based on machine learning. However, the current researches simply the preprocessing process to meet real-time feedback, resulting in a reduction in classification accuracy. This paper proposes a closed-loop electroencephalogram (EEG) neurofeedback processing program with high accuracy in feedback information. Artifact subspace reconstruction is used to optimize EEG processing. The positive, neutral, and negative emotion topographic maps of the 5 frequency bands verify inter-individual differences. A support vector machine with particle swarm optimization is used to construct an individual emotion recognition model based on the power spectral density features. The average classification accuracy of 5 subjects is 97.49%. The emotion facial Go/No-go task objectively demonstrates the effectiveness of neurofeedback training on emotion regulation. The closed-loop individual-specific EEG neurofeedback program provides a promising method for emotion regulation training.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Individual difference is the main factor affecting the effect of emotion regulation neurofeedback training. An individual-specific emotion recognition model can be constructed based on machine learning. However, the current researches simply the preprocessing process to meet real-time feedback, resulting in a reduction in classification accuracy. This paper proposes a closed-loop electroencephalogram (EEG) neurofeedback processing program with high accuracy in feedback information. Artifact subspace reconstruction is used to optimize EEG processing. The positive, neutral, and negative emotion topographic maps of the 5 frequency bands verify inter-individual differences. A support vector machine with particle swarm optimization is used to construct an individual emotion recognition model based on the power spectral density features. The average classification accuracy of 5 subjects is 97.49%. The emotion facial Go/No-go task objectively demonstrates the effectiveness of neurofeedback training on emotion regulation. The closed-loop individual-specific EEG neurofeedback program provides a promising method for emotion regulation training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
闭环个体特异性脑电图神经反馈对情绪调节的影响
个体差异是影响情绪调节神经反馈训练效果的主要因素。基于机器学习,可以构建个体情感识别模型。然而,目前的研究仅仅是为了满足实时反馈而进行预处理,导致分类精度降低。提出了一种反馈信息精度高的闭环脑电图神经反馈处理方案。利用伪影子空间重构优化脑电信号处理。5个频带的积极、中性和消极情绪地形图验证了个体间的差异。基于功率谱密度特征,采用支持向量机和粒子群算法构建个体情感识别模型。5个被试的平均分类准确率为97.49%。情绪面部Go/No-go任务客观地证明了神经反馈训练对情绪调节的有效性。闭环个体特异性脑电图神经反馈程序为情绪调节训练提供了一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of MobileRobot Navigation System Based on ROS Platform Cooperative Pursuit in a Non-closed Bounded Domain 3D Reconstruction of Astronomical Site Selection Based on Multi-Source Remote Sensing Design and Implementation of Manipulator Based on Arduino Dynamic Reversible Data Hiding for Edge Contrast Enhancement of Medical Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1