Faster Secure Multiparty Computation of Adaptive Gradient Descent

Wen-jie Lu, Yixuan Fang, Zhicong Huang, Cheng Hong, Chaochao Chen, Hunter Qu, Yajin Zhou, K. Ren
{"title":"Faster Secure Multiparty Computation of Adaptive Gradient Descent","authors":"Wen-jie Lu, Yixuan Fang, Zhicong Huang, Cheng Hong, Chaochao Chen, Hunter Qu, Yajin Zhou, K. Ren","doi":"10.1145/3411501.3419427","DOIUrl":null,"url":null,"abstract":"Most of the secure multi-party computation (MPC) machine learning methods can only afford simple gradient descent (sGD 1) optimizers, and are unable to benefit from the recent progress of adaptive GD optimizers (e.g., Adagrad, Adam and their variants), which include square-root and reciprocal operations that are hard to compute in MPC. To mitigate this issue, we introduce InvertSqrt, an efficient MPC protocol for computing 1/√x. Then we implement the Adam adaptive GD optimizer based on InvertSqrt and use it for training on different datasets. The training costs compare favorably to the sGD ones, indicating that adaptive GD optimizers in MPC have become practical.","PeriodicalId":116231,"journal":{"name":"Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411501.3419427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Most of the secure multi-party computation (MPC) machine learning methods can only afford simple gradient descent (sGD 1) optimizers, and are unable to benefit from the recent progress of adaptive GD optimizers (e.g., Adagrad, Adam and their variants), which include square-root and reciprocal operations that are hard to compute in MPC. To mitigate this issue, we introduce InvertSqrt, an efficient MPC protocol for computing 1/√x. Then we implement the Adam adaptive GD optimizer based on InvertSqrt and use it for training on different datasets. The training costs compare favorably to the sGD ones, indicating that adaptive GD optimizers in MPC have become practical.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应梯度下降的快速安全多方计算
大多数安全多方计算(MPC)机器学习方法只能提供简单的梯度下降(sgd1)优化器,并且无法从自适应GD优化器(例如Adagrad, Adam及其变体)的最新进展中受益,其中包括在MPC中难以计算的平方根和倒数运算。为了缓解这个问题,我们引入了InvertSqrt,这是一种用于计算1/√x的高效MPC协议。然后我们实现了基于InvertSqrt的Adam自适应GD优化器,并使用它在不同的数据集上进行训练。与sGD的训练成本相比,该方法的训练成本更低,这表明MPC中的自适应GD优化器已经变得实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Privacy-Preserving in Defending against Membership Inference Attacks Adversarial Detection on Graph Structured Data Faster Secure Multiparty Computation of Adaptive Gradient Descent SVM Learning for Default Prediction of Credit Card under Differential Privacy Information Leakage by Model Weights on Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1