{"title":"Clustering and Compressive Data Gathering for Transmission Efficient Wireless Sensor Networks","authors":"U. Pacharaney, R. B. Jain, Rajivkumar Gupta","doi":"10.4018/978-1-5225-9493-2.ch002","DOIUrl":null,"url":null,"abstract":"The chapter focuses on minimizing the amount of wireless transmission in sensory data gathering for correlated data field monitoring in wireless sensor networks (WSN), which is a major source of power consumption. Compressive sensing (CS) is a new in-node compression technique that is economically used for data gathering in an energy-constrained WSN. Among existing CS-based routing, cluster-based methods offer the most transmission-efficient architecture. Most CS-based clustering methods randomly choose nodes to form clusters, neglecting the topology structure. A novel base station (BS)-assisted cluster, spatially correlated cluster using compressive sensing (SCC_CS), is proposed to reduce number of transmissions in and form the cluster by exploiting spatial correlation based on geographical proximity. The proposed BS-assisted clustering scheme follows hexagonal deployment strategy. In SCC_CS, cluster heads are solely involved in data gathering and transmitting CS measurements to BS, saving intra-cluster communication cost, and thus, network life increases as proved by simulation.","PeriodicalId":406776,"journal":{"name":"Managing Resources for Futuristic Wireless Networks","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Managing Resources for Futuristic Wireless Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-9493-2.ch002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The chapter focuses on minimizing the amount of wireless transmission in sensory data gathering for correlated data field monitoring in wireless sensor networks (WSN), which is a major source of power consumption. Compressive sensing (CS) is a new in-node compression technique that is economically used for data gathering in an energy-constrained WSN. Among existing CS-based routing, cluster-based methods offer the most transmission-efficient architecture. Most CS-based clustering methods randomly choose nodes to form clusters, neglecting the topology structure. A novel base station (BS)-assisted cluster, spatially correlated cluster using compressive sensing (SCC_CS), is proposed to reduce number of transmissions in and form the cluster by exploiting spatial correlation based on geographical proximity. The proposed BS-assisted clustering scheme follows hexagonal deployment strategy. In SCC_CS, cluster heads are solely involved in data gathering and transmitting CS measurements to BS, saving intra-cluster communication cost, and thus, network life increases as proved by simulation.