Optimal Resource Provisioning Approach based on Cost Modeling for Spark Applications in Public Clouds

Jianfei Ruan, Q. Zheng, B. Dong
{"title":"Optimal Resource Provisioning Approach based on Cost Modeling for Spark Applications in Public Clouds","authors":"Jianfei Ruan, Q. Zheng, B. Dong","doi":"10.1145/2843966.2843972","DOIUrl":null,"url":null,"abstract":"Efficient resource provisioning is required when running Spark applications in public clouds. However, how to optimize resource provisioning to minimize the time and/or monetary cost for a specific application remains an intractable problem since resource provisioning may differ from application to application and even be affected by the amount of input data. Existing resource settings heavily rely on random selection or previous deployer experience, frequently leading to low-quality resource provisioning. Therefore, there is an urgent need to propose an approach towards optimal resource provisioning for Spark applications in public clouds. This is a PhD proposal, where an approach based on time and monetary cost modeling is presented for cloud resource provisioning optimization under two typical constrained scenarios. The approach systematically drives resource provisioning for a specific Spark application, which may save a significant amount of time and money, compared to randomly selected settings.","PeriodicalId":224203,"journal":{"name":"Proceedings of the Doctoral Symposium of the 16th International Middleware Conference","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Doctoral Symposium of the 16th International Middleware Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2843966.2843972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Efficient resource provisioning is required when running Spark applications in public clouds. However, how to optimize resource provisioning to minimize the time and/or monetary cost for a specific application remains an intractable problem since resource provisioning may differ from application to application and even be affected by the amount of input data. Existing resource settings heavily rely on random selection or previous deployer experience, frequently leading to low-quality resource provisioning. Therefore, there is an urgent need to propose an approach towards optimal resource provisioning for Spark applications in public clouds. This is a PhD proposal, where an approach based on time and monetary cost modeling is presented for cloud resource provisioning optimization under two typical constrained scenarios. The approach systematically drives resource provisioning for a specific Spark application, which may save a significant amount of time and money, compared to randomly selected settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于成本建模的公共云Spark应用资源优化配置方法
在公共云中运行Spark应用程序时,需要高效的资源分配。然而,如何优化资源配置以最小化特定应用程序的时间和/或金钱成本仍然是一个棘手的问题,因为资源配置可能因应用程序而异,甚至会受到输入数据量的影响。现有的资源设置严重依赖于随机选择或以前的部署人员经验,经常导致低质量的资源配置。因此,迫切需要为公共云中的Spark应用程序提出一种优化资源配置的方法。这是一个博士提案,其中提出了一种基于时间和货币成本建模的方法,用于两种典型约束场景下的云资源配置优化。该方法系统地驱动特定Spark应用程序的资源配置,与随机选择的设置相比,这可能节省大量的时间和金钱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Resource Provisioning Approach based on Cost Modeling for Spark Applications in Public Clouds Towards a Scalable, Distributed Metadata Service for Causal Consistency under Partial Geo-replication Intrusion Detection System for Embedded Systems Proceedings of the Doctoral Symposium of the 16th International Middleware Conference Towards Semantic Integration of Heterogeneous Sensor Data with Indigenous Knowledge for Drought Forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1