{"title":"Towards Automatic Fake News Detection in Digital Platforms: Properties, Limitations, and Applications","authors":"Julio C. S. Reis, Fabrício Benevenuto","doi":"10.5753/CTD.2021.15754","DOIUrl":null,"url":null,"abstract":"Digital platforms, including social media systems and messaging applications, have become a place for campaigns of misinformation that affect the credibility of the entire news ecosystem. The emergence of fake news in these environments has quickly evolved into a worldwide phenomenon, where the lack of scalable fact-checking strategies is especially worrisome. In this context, this thesis aim at investigating practical approaches for the automatic detection of fake news disseminated in digital platforms. Particularly, we explore new datasets and features for fake news detection to assess the prediction performance of current supervised machine learning approaches. We also propose an unbiased framework for quantifying the informativeness of features for fake news detection, and present an explanation of factors contributing to model decisions considering data from different scenarios. Finally, we propose and implement a new mechanism that accounts for the potential occurrence of fake news within the data, significantly reducing the number of content pieces journalists and fact-checkers have to go through before finding a fake story.","PeriodicalId":236085,"journal":{"name":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/CTD.2021.15754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Digital platforms, including social media systems and messaging applications, have become a place for campaigns of misinformation that affect the credibility of the entire news ecosystem. The emergence of fake news in these environments has quickly evolved into a worldwide phenomenon, where the lack of scalable fact-checking strategies is especially worrisome. In this context, this thesis aim at investigating practical approaches for the automatic detection of fake news disseminated in digital platforms. Particularly, we explore new datasets and features for fake news detection to assess the prediction performance of current supervised machine learning approaches. We also propose an unbiased framework for quantifying the informativeness of features for fake news detection, and present an explanation of factors contributing to model decisions considering data from different scenarios. Finally, we propose and implement a new mechanism that accounts for the potential occurrence of fake news within the data, significantly reducing the number of content pieces journalists and fact-checkers have to go through before finding a fake story.