A Deep Reinforcement Learning Based Emotional State Analysis Method for Online Learning

Jin Lu
{"title":"A Deep Reinforcement Learning Based Emotional State Analysis Method for Online Learning","authors":"Jin Lu","doi":"10.23977/jaip.2022.050210","DOIUrl":null,"url":null,"abstract":": With the development of artificial intelligence technology, the basic judgment of students' learning state can be realized through the comprehensive analysis of students' face, expression, behavior posture and other multi-modal data. However, due to the lack of end-to-end recognition model and complete data sets, it is impossible to achieve accurate analysis of learning status. In this paper, based on deep reinforcement learning, an online learning state analysis method based on affective computing is proposed. On the basis of student identity recognition, face recognition is carried out through an unsupervised expression recognition model based on Siam-RCNN, and then 3D CNNs is used to recognize the feature data set for timing extraction. The state of collaborative awareness learning is analyzed by using HMM model. After verification, the accuracy of emotional state recognition can reach 98.88%, which is in the leading level in the industry.","PeriodicalId":293823,"journal":{"name":"Journal of Artificial Intelligence Practice","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23977/jaip.2022.050210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: With the development of artificial intelligence technology, the basic judgment of students' learning state can be realized through the comprehensive analysis of students' face, expression, behavior posture and other multi-modal data. However, due to the lack of end-to-end recognition model and complete data sets, it is impossible to achieve accurate analysis of learning status. In this paper, based on deep reinforcement learning, an online learning state analysis method based on affective computing is proposed. On the basis of student identity recognition, face recognition is carried out through an unsupervised expression recognition model based on Siam-RCNN, and then 3D CNNs is used to recognize the feature data set for timing extraction. The state of collaborative awareness learning is analyzed by using HMM model. After verification, the accuracy of emotional state recognition can reach 98.88%, which is in the leading level in the industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的在线学习情绪状态分析方法
:随着人工智能技术的发展,通过对学生面部、表情、行为姿态等多模态数据的综合分析,可以实现对学生学习状态的基本判断。然而,由于缺乏端到端的识别模型和完整的数据集,无法实现对学习状态的准确分析。在深度强化学习的基础上,提出了一种基于情感计算的在线学习状态分析方法。在学生身份识别的基础上,通过基于Siam-RCNN的无监督表情识别模型进行人脸识别,然后利用3D cnn识别特征数据集进行时序提取。利用HMM模型分析了协同意识学习的状态。经验证,情绪状态识别准确率可达98.88%,处于行业领先水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discussion on Key Technologies of Computer Artificial Intelligence Recognition Research and Application of Health Code Recognition Based on Paddle OCR under the Background of Epidemic Prevention and Control A Deep Reinforcement Learning Based Emotional State Analysis Method for Online Learning Design of an AI Health Risk Assessment System for Dietary Hygiene of Key Groups Based on IoT Wearable Devices Design and Implementation of Tour Guide Robot for Red Education Base
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1