Di Wu, J. Eilert, R. Asghar, Dake Liu, A. Nilsson, E. Tell, Eric Alfredsson
{"title":"System architecture for 3GPP LTE modem using a programmable baseband processor","authors":"Di Wu, J. Eilert, R. Asghar, Dake Liu, A. Nilsson, E. Tell, Eric Alfredsson","doi":"10.4018/jertcs.2010070103","DOIUrl":null,"url":null,"abstract":"3G evolution towards HSPA (High Speed Packet Access) and LTE (Long-Term Evolution) is ongoing which will substantially increase the throughput with higher spectral efficiency. This paper presents the system architecture of an LTE modem based on a programmable baseband processor. The architecture includes a baseband processor that handles processing such as time and frequency synchronization, IFFT/FFT (up to 2048-p), channel estimation and subcarrier demapping. The throughput and latency requirements of a Category 4 User Equipment (CAT4 UE) is met by adding a MIMO symbol detector and a parallel Turbo decoder supporting H-ARQ. This brings both low silicon cost and enough flexibility to support other wireless standards. The complexity demonstrated by the modem shows the practicality and advantage of using programmable baseband processors for a single-chip LTE solution.","PeriodicalId":389625,"journal":{"name":"2009 International Symposium on System-on-Chip","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on System-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jertcs.2010070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
3G evolution towards HSPA (High Speed Packet Access) and LTE (Long-Term Evolution) is ongoing which will substantially increase the throughput with higher spectral efficiency. This paper presents the system architecture of an LTE modem based on a programmable baseband processor. The architecture includes a baseband processor that handles processing such as time and frequency synchronization, IFFT/FFT (up to 2048-p), channel estimation and subcarrier demapping. The throughput and latency requirements of a Category 4 User Equipment (CAT4 UE) is met by adding a MIMO symbol detector and a parallel Turbo decoder supporting H-ARQ. This brings both low silicon cost and enough flexibility to support other wireless standards. The complexity demonstrated by the modem shows the practicality and advantage of using programmable baseband processors for a single-chip LTE solution.