{"title":"Application of an improved mining complex for opencast mining of ore deposits","authors":"A. Cheban","doi":"10.21285/2686-9993-2021-44-4-441-447","DOIUrl":null,"url":null,"abstract":"The purpose of the study is reducing the loss of mineral raw materials and increasing the efficiency of mining operations using a mining complex through the introduction of a new design and engineering solution that improves the equipment functionality. The study involves the analysis of known designs of mining equipment capable of providing the transformation of cyclic scooping of rock mass into its continuous loading, as well as screening of fine fractions from the ore mass. High productivity mining complexes are referred to a promising direction of mining equipment development. The article proposes an improved design of the mining complex, which allows to combine the extraction and loading process and ore mass grading. The improved mining complex is equipped with an annular conveyor with vibrating grids through which fines are screened into the accumulation hopper. From the accumulation hopper the small fractions are sent by means of a pneumatic conveying system to the bunker sections of a special-purpose hauler while the oversize product is loaded into a dump truck by a dump conveyor. The fine fractions of substandard ore collected in the bunker sections are sent for heap leaching. The fine fractions of conditioned ore are sent to the concentration plant to be processed. The proposed design and engineering solution employing an improved mining complex will reduce the cost of works and increase the recovery factor of mineral raw materials in the development of complex-structured deposits of ores characterized by natural concentration of small classes. Removal of fine ore fractions directly during the excavation and loading process can significantly reduce the dusting and decrease the loss of mineral raw materials from blowing and spilling of fine fractions.","PeriodicalId":128080,"journal":{"name":"Earth sciences and subsoil use","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth sciences and subsoil use","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2686-9993-2021-44-4-441-447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of the study is reducing the loss of mineral raw materials and increasing the efficiency of mining operations using a mining complex through the introduction of a new design and engineering solution that improves the equipment functionality. The study involves the analysis of known designs of mining equipment capable of providing the transformation of cyclic scooping of rock mass into its continuous loading, as well as screening of fine fractions from the ore mass. High productivity mining complexes are referred to a promising direction of mining equipment development. The article proposes an improved design of the mining complex, which allows to combine the extraction and loading process and ore mass grading. The improved mining complex is equipped with an annular conveyor with vibrating grids through which fines are screened into the accumulation hopper. From the accumulation hopper the small fractions are sent by means of a pneumatic conveying system to the bunker sections of a special-purpose hauler while the oversize product is loaded into a dump truck by a dump conveyor. The fine fractions of substandard ore collected in the bunker sections are sent for heap leaching. The fine fractions of conditioned ore are sent to the concentration plant to be processed. The proposed design and engineering solution employing an improved mining complex will reduce the cost of works and increase the recovery factor of mineral raw materials in the development of complex-structured deposits of ores characterized by natural concentration of small classes. Removal of fine ore fractions directly during the excavation and loading process can significantly reduce the dusting and decrease the loss of mineral raw materials from blowing and spilling of fine fractions.