Personal Identification System based on Multiple Palmprint Features

A. K. Qin, P. N. Suganthan, C. H. Tay, H. Pa
{"title":"Personal Identification System based on Multiple Palmprint Features","authors":"A. K. Qin, P. N. Suganthan, C. H. Tay, H. Pa","doi":"10.1109/ICARCV.2006.345257","DOIUrl":null,"url":null,"abstract":"This paper presents a palmprint recognition system with palmprint images collected by a high-resolution color scanner. The scanned RGB image of the palmprint is pre-processed and the region of interest (ROI) of the palm is determined by the finger gap locations. Three sets of features extracted from the ROI image by the 2D Gabor filter using the palmprint phase orientation code (PPOC) represent texture information of the palm in the form of a real component, an imaginary component and an orientation component, respectively. The recognition is performed by applying the enhanced linear discriminant analysis (EDLDA) coupled with the nearest neighbor classifier on these three feature sets, respectively, and the decisions are combined via the majority voting scheme to yield the ultimate recognition. Experiments on our collected palmprint image database show promising recognition rate of 99.6% with a low False Acceptance Rate (FAR) of 0.02%","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a palmprint recognition system with palmprint images collected by a high-resolution color scanner. The scanned RGB image of the palmprint is pre-processed and the region of interest (ROI) of the palm is determined by the finger gap locations. Three sets of features extracted from the ROI image by the 2D Gabor filter using the palmprint phase orientation code (PPOC) represent texture information of the palm in the form of a real component, an imaginary component and an orientation component, respectively. The recognition is performed by applying the enhanced linear discriminant analysis (EDLDA) coupled with the nearest neighbor classifier on these three feature sets, respectively, and the decisions are combined via the majority voting scheme to yield the ultimate recognition. Experiments on our collected palmprint image database show promising recognition rate of 99.6% with a low False Acceptance Rate (FAR) of 0.02%
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多掌纹特征的个人身份识别系统
本文介绍了一种利用高分辨率彩色扫描仪采集掌纹图像的掌纹识别系统。对扫描后的掌纹RGB图像进行预处理,根据手指间隙位置确定掌纹感兴趣区域(ROI)。利用掌纹相位方向码(PPOC)进行二维Gabor滤波,从ROI图像中提取三组特征,分别以实分量、虚分量和方向分量的形式表示掌纹纹理信息。通过对这三个特征集分别应用增强型线性判别分析(EDLDA)和最近邻分类器进行识别,并通过多数投票方案将决策组合以产生最终识别。在我们收集的掌纹图像数据库上进行的实验表明,该方法的识别率为99.6%,错误接受率(FAR)为0.02%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
μ-Interaction Measure for Unstable Systems GestureCam: A Smart Camera for Gesture Recognition and Gesture-Controlled Web Navigation A HHMM-Based Approach for Robust Fall Detection Verifying a User in a Personal Face Space The Effect of Image Resolution on the Performance of a Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1