An efficient grid algorithm for faster clustering using K medoids approach

G. M. Daiyan, F. Abid, Md. Ataur Rahman Khan, A. Tareq
{"title":"An efficient grid algorithm for faster clustering using K medoids approach","authors":"G. M. Daiyan, F. Abid, Md. Ataur Rahman Khan, A. Tareq","doi":"10.1109/ICCITECHN.2012.6509704","DOIUrl":null,"url":null,"abstract":"Clustering is the methodology to separate similar objects of data set in one cluster and dissimilar objects of data set in another cluster. K means and K medoids are most widely used Clustering algorithms for selecting group of objects for data sets. k means clustering has less time complexity than k medoids method, but k means clustering method suffers from extreme values. So, we have focused our view to k medoids clustering method. Conventional k-medoids clustering algorithm suffers from many limitations. We have done analysis on these limitations such as the problem of finding natural clusters, the dependency of output on the order of input data. In this paper we have proposed a new algorithm named Grid Multidimensional K medoids which is designed to overcome the above limitations and provide a faster clustering than K medoids.","PeriodicalId":127060,"journal":{"name":"2012 15th International Conference on Computer and Information Technology (ICCIT)","volume":"76 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2012.6509704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Clustering is the methodology to separate similar objects of data set in one cluster and dissimilar objects of data set in another cluster. K means and K medoids are most widely used Clustering algorithms for selecting group of objects for data sets. k means clustering has less time complexity than k medoids method, but k means clustering method suffers from extreme values. So, we have focused our view to k medoids clustering method. Conventional k-medoids clustering algorithm suffers from many limitations. We have done analysis on these limitations such as the problem of finding natural clusters, the dependency of output on the order of input data. In this paper we have proposed a new algorithm named Grid Multidimensional K medoids which is designed to overcome the above limitations and provide a faster clustering than K medoids.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于K介质的快速聚类网格算法
聚类是一种将数据集的相似对象从一个聚类中分离出来,而将数据集的不同对象从另一个聚类中分离出来的方法。K均值和K介质是最常用的聚类算法,用于选择数据集的对象组。K均值聚类的时间复杂度比K媒质方法小,但K均值聚类存在极值问题。因此,我们将注意力集中在k介质聚类方法上。传统的k- medium聚类算法存在许多局限性。我们已经对这些限制进行了分析,比如寻找自然聚类的问题,输出对输入数据顺序的依赖。本文提出了一种新的网格多维K形聚类算法,该算法克服了上述限制,提供了比K形聚类更快的聚类速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise reduction algorithm for LS channel estimation in OFDM system Composite pattern matching in time series Android mobile application: Remote monitoring of blood pressure Affective mapping of EEG during executive function tasks Distributed k-dominant skyline queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1