Quality lignite coal detection with discrete wavelet transform, discrete fourier transform, and ANN based on k-means clustering method

S. A. Korkmaz, Furkan Esmeray
{"title":"Quality lignite coal detection with discrete wavelet transform, discrete fourier transform, and ANN based on k-means clustering method","authors":"S. A. Korkmaz, Furkan Esmeray","doi":"10.1109/ISDFS.2018.8355326","DOIUrl":null,"url":null,"abstract":"In this article, the lignite coal datas in the Kalburçayı area of the Sivas-Kangal Basin have been used. This original data obtained from Kalburçayı area of the Sivas-Kangal Basin consists of 66 observations in the lignite coal area, including lignite quality parameters such as moisture content, ash, sulfur content and calorific value. These lignite coal datas have been clustered in two group with k-means method according to calori values. This clustering lignite coal data is classified by the Artifical Neural Network (ANN) classifier. In addition, Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) have been applied to coal data for ANN classifiers. DFT_ANN, DWT_ANN, and ANN classification success results are compared. The highest classification success rate was found by DWT_ANN method.","PeriodicalId":154279,"journal":{"name":"2018 6th International Symposium on Digital Forensic and Security (ISDFS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Symposium on Digital Forensic and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS.2018.8355326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this article, the lignite coal datas in the Kalburçayı area of the Sivas-Kangal Basin have been used. This original data obtained from Kalburçayı area of the Sivas-Kangal Basin consists of 66 observations in the lignite coal area, including lignite quality parameters such as moisture content, ash, sulfur content and calorific value. These lignite coal datas have been clustered in two group with k-means method according to calori values. This clustering lignite coal data is classified by the Artifical Neural Network (ANN) classifier. In addition, Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) have been applied to coal data for ANN classifiers. DFT_ANN, DWT_ANN, and ANN classification success results are compared. The highest classification success rate was found by DWT_ANN method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于离散小波变换、离散傅立叶变换和基于k-means聚类方法的人工神经网络的优质褐煤检测
本文利用了西瓦斯—康加尔盆地卡尔布尔帕拉扎耶尔地区的褐煤资料。该原始数据来自Sivas-Kangal盆地kalburayayya地区,由褐煤区66个观测数据组成,包括褐煤质量参数,如水分含量、灰分、硫含量和热值。根据热量值,用k-means方法将这些褐煤数据聚为两组。该聚类方法采用人工神经网络分类器对褐煤数据进行分类。此外,将离散傅立叶变换(DFT)和离散小波变换(DWT)应用于煤数据的人工神经网络分类。比较DFT_ANN、DWT_ANN和ANN分类成功结果。DWT_ANN方法分类成功率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android gaming malware detection using system call analysis Strategic cyber-security perspective in smart grids Central audit logging mechanism in personal data web services Review and comparison of captcha approaches and a new captcha model An overview of cyber-attack vectors on SCADA systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1