The gene expression messy genetic algorithm for financial applications

H. Kargupta, K. Buescher
{"title":"The gene expression messy genetic algorithm for financial applications","authors":"H. Kargupta, K. Buescher","doi":"10.1109/CIFER.1996.501840","DOIUrl":null,"url":null,"abstract":"The paper introduces the gene expression messy genetic algorithm (GEMGA)-a new generation of messy GAs that may find many applications in financial engineering. Unlike other existing blackbox optimization algorithms, GEMGA directly searches for relations among the members of the search space. The GEMGA is an O(|/spl Lambda/|/sup k/(l+k)) sample complexity algorithm for the class of order-k delineable problems (Kargupta, 1995) (problems that can be solved by considering no higher than order-k relations) in sequence representation of length L and alphabet set /spl Lambda/. The GEMGA is designed based on the alternate perspective of natural evolution proposed by the SEARCH framework (Kargupta, 1995) that emphasizes the role of gene expression. The paper also presents the test results for large multimodal problems and identifies possible applications to financial engineering.","PeriodicalId":378565,"journal":{"name":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","volume":"26 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.1996.501840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The paper introduces the gene expression messy genetic algorithm (GEMGA)-a new generation of messy GAs that may find many applications in financial engineering. Unlike other existing blackbox optimization algorithms, GEMGA directly searches for relations among the members of the search space. The GEMGA is an O(|/spl Lambda/|/sup k/(l+k)) sample complexity algorithm for the class of order-k delineable problems (Kargupta, 1995) (problems that can be solved by considering no higher than order-k relations) in sequence representation of length L and alphabet set /spl Lambda/. The GEMGA is designed based on the alternate perspective of natural evolution proposed by the SEARCH framework (Kargupta, 1995) that emphasizes the role of gene expression. The paper also presents the test results for large multimodal problems and identifies possible applications to financial engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将基因表达凌乱的遗传算法用于金融应用
本文介绍了基因表达混乱遗传算法(GEMGA)——一种在金融工程中有广泛应用前景的新一代混乱遗传算法。与现有的其他黑箱优化算法不同,GEMGA直接搜索搜索空间成员之间的关系。GEMGA是一种O(|/spl Lambda/|/sup k/(l+k))样本复杂度算法,适用于长度为l和字母集/spl Lambda/的序列表示中的k阶可描述问题(Kargupta, 1995)(可以通过考虑不高于k阶关系来解决的问题)。GEMGA的设计基于SEARCH框架(Kargupta, 1995)提出的自然进化的另一种观点,该观点强调基因表达的作用。本文还介绍了大型多模态问题的测试结果,并确定了在金融工程中的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimisation of an investment in South East Asian country funds investment company Self-organizing fuzzy and MLP approaches to detecting fraudulent financial reporting Density-based clustering and radial basis function modeling to generate credit card fraud scores The gene expression messy genetic algorithm for financial applications Problems with Monte Carlo simulation in the pricing of contingent claims
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1