Generative Alignment of Posterior Probabilities for Source-free Domain Adaptation

S. Chhabra, Hemanth Venkateswara, Baoxin Li
{"title":"Generative Alignment of Posterior Probabilities for Source-free Domain Adaptation","authors":"S. Chhabra, Hemanth Venkateswara, Baoxin Li","doi":"10.1109/WACV56688.2023.00411","DOIUrl":null,"url":null,"abstract":"Existing domain adaptation literature comprises multiple techniques that align the labeled source and unlabeled target domains at different stages, and predict the target labels. In a source-free domain adaptation setting, the source data is not available for alignment. We present a source-free generative paradigm that captures the relations between the source categories and enforces them onto the unlabeled target data, thereby circumventing the need for source data without introducing any new hyper-parameters. The adaptation is performed through the adversarial alignment of the posterior probabilities of the source and target categories. The proposed approach demonstrates competitive performance against other source-free domain adaptation techniques and can also be used for source-present settings.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Existing domain adaptation literature comprises multiple techniques that align the labeled source and unlabeled target domains at different stages, and predict the target labels. In a source-free domain adaptation setting, the source data is not available for alignment. We present a source-free generative paradigm that captures the relations between the source categories and enforces them onto the unlabeled target data, thereby circumventing the need for source data without introducing any new hyper-parameters. The adaptation is performed through the adversarial alignment of the posterior probabilities of the source and target categories. The proposed approach demonstrates competitive performance against other source-free domain adaptation techniques and can also be used for source-present settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无源域自适应的后验概率生成对齐
现有的领域适应文献包括多种技术,它们在不同阶段对标记的源和未标记的目标领域进行对齐,并预测目标标签。在无源域自适应设置中,源数据不可用于对齐。我们提出了一个无源的生成范式,它捕获源类别之间的关系,并将它们强制到未标记的目标数据上,从而在不引入任何新的超参数的情况下避免了对源数据的需求。自适应是通过源和目标类别的后验概率的对抗性对齐来执行的。所提出的方法展示了与其他无源域自适应技术相比具有竞争力的性能,也可用于源当前设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aggregating Bilateral Attention for Few-Shot Instance Localization Burst Reflection Removal using Reflection Motion Aggregation Cues Complementary Cues from Audio Help Combat Noise in Weakly-Supervised Object Detection Efficient Skeleton-Based Action Recognition via Joint-Mapping strategies Few-shot Object Detection via Improved Classification Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1