A 334uW 0.158mm2 Saber Learning with Rounding based Post-Quantum Crypto Accelerator

A. Ghosh, J. M. B. Mera, A. Karmakar, D. Das, Santosh K. Ghosh, I. Verbauwhede, Shreyas Sen
{"title":"A 334uW 0.158mm2 Saber Learning with Rounding based Post-Quantum Crypto Accelerator","authors":"A. Ghosh, J. M. B. Mera, A. Karmakar, D. Das, Santosh K. Ghosh, I. Verbauwhede, Shreyas Sen","doi":"10.1109/CICC53496.2022.9772859","DOIUrl":null,"url":null,"abstract":"The arrival of large-scale quantum computers will break the security assurances of our current public-key cryptography. National Institute of Standard & Technology (NIST) is currently running a multi-year-long standardization procedure to select quantum-safe or postquantum cryptographic schemes to be used in the future. Energy efficiency is an important criterion in the selection process. This paper presents the first Silicon verified ASIC implementation for Saber (LWR algorithm as proposed in [1], [2]), a NIST PQC Round 3 finalist candidate in the key-encapsulation mechanism (KEM) category. Fig. 1 briefly describes the learning with rounding (LWR) problem, which is hard to solve even in the presence of large quantum computers due to the noise generated from rounding. IC features are tabulated in Fig. 1. which also shows a simplified version of the Saber KEM scheme to establish a secret key between two communicating parties Alice and Bob. Due to learning with rounding, secret $s$ is hard to guess based on publicly available data as shown in Fig. 1.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The arrival of large-scale quantum computers will break the security assurances of our current public-key cryptography. National Institute of Standard & Technology (NIST) is currently running a multi-year-long standardization procedure to select quantum-safe or postquantum cryptographic schemes to be used in the future. Energy efficiency is an important criterion in the selection process. This paper presents the first Silicon verified ASIC implementation for Saber (LWR algorithm as proposed in [1], [2]), a NIST PQC Round 3 finalist candidate in the key-encapsulation mechanism (KEM) category. Fig. 1 briefly describes the learning with rounding (LWR) problem, which is hard to solve even in the presence of large quantum computers due to the noise generated from rounding. IC features are tabulated in Fig. 1. which also shows a simplified version of the Saber KEM scheme to establish a secret key between two communicating parties Alice and Bob. Due to learning with rounding, secret $s$ is hard to guess based on publicly available data as shown in Fig. 1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于舍入的334uW 0.158mm2 Saber学习后量子加密加速器
大规模量子计算机的到来将打破我们目前的公钥加密的安全保证。美国国家标准与技术研究所(NIST)目前正在进行一项长达数年的标准化程序,以选择未来使用的量子安全或后量子加密方案。能源效率是选择过程中的一个重要标准。本文介绍了Saber (LWR算法在[1],[2]中提出)的第一个经过硅验证的ASIC实现,Saber是NIST PQC第三轮入围密钥封装机制(KEM)类别的候选对象。图1简要描述了舍入学习(LWR)问题,由于舍入产生的噪声,即使在大型量子计算机存在的情况下也难以解决。IC特征列于图1中。它还展示了Saber KEM方案的简化版本,以在通信双方Alice和Bob之间建立密钥。由于采用四舍五入的学习方法,根据公开数据很难猜测secret $s$,如图1所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
All Rivers Flow to the Sea: A High Power Density Wireless Power Receiver with Split-Dual-Path Rectification and Hybrid-Quad-Path Step-Down Conversion A 400-to-12 V Fully Integrated Switched-Capacitor DC-DC Converter Achieving 119 mW/mm2 at 63.6 % Efficiency A 0.14nJ/b 200Mb/s Quasi-Balanced FSK Transceiver with Closed-Loop Modulation and Sideband Energy Detection A 2GHz voltage mode power scalable RF-Front-End with 2.5dB-NF and 0.5dBm-1dBCP High-Speed Digital-to-Analog Converter Design Towards High Dynamic Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1