Impact Analysis of wind Energy on Electricity Price using Deep Neural Network

Neeraj Kumar, M. M. Tripathi
{"title":"Impact Analysis of wind Energy on Electricity Price using Deep Neural Network","authors":"Neeraj Kumar, M. M. Tripathi","doi":"10.1109/INDIACom51348.2021.00026","DOIUrl":null,"url":null,"abstract":"The Development scenario for renewable energy across the globe is changing rapidly in terms of capacity addition and grid interconnection. The impact of wind energy on electricity price is significant and it is an important task for power system planners to forecast the price in light of its variability. The impact of wind energy penetration on electricity price using Support Vector Regression (SVR) and Deep Neural Network (DNN) has been investigated for the Austria Electricity market. From the evaluation metrics calculation, it is observed that the DNN model performs better over SVR for the available dataset. The MAPE Value for DNN model was found 5.384 for the available dataset.","PeriodicalId":415594,"journal":{"name":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","volume":"33 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIACom51348.2021.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Development scenario for renewable energy across the globe is changing rapidly in terms of capacity addition and grid interconnection. The impact of wind energy on electricity price is significant and it is an important task for power system planners to forecast the price in light of its variability. The impact of wind energy penetration on electricity price using Support Vector Regression (SVR) and Deep Neural Network (DNN) has been investigated for the Austria Electricity market. From the evaluation metrics calculation, it is observed that the DNN model performs better over SVR for the available dataset. The MAPE Value for DNN model was found 5.384 for the available dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度神经网络分析风电对电价的影响
在容量增加和电网互联方面,全球可再生能源的发展前景正在迅速变化。风电对电价的影响是巨大的,如何根据风电价格的变异性对其进行预测是电力系统规划者的一项重要任务。利用支持向量回归(SVR)和深度神经网络(DNN)对奥地利电力市场进行了风电渗透率对电价的影响研究。从评估指标的计算中可以看出,对于可用的数据集,DNN模型的性能优于SVR。DNN模型的MAPE值为5.384。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic Scheduling of Parking Lot Operator in Energy and Regulation Markets amalgamating PBDR Social Synchrony: An Analytical Contemplation of Contemporary State of Art Frameworks The AI enabled Chatbot Framework for Intelligent Citizen-Government Interaction for Delivery of Services Biometric System - Challenges and Future Trends Solving SIS Epidemic Disease Model by Flower Pollination Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1