Ag-Doped TiO2: Synthesis, Characterization and Photodegradation of 4BS Dye

M. J. Pawar, V. Nimbalkar, A. D. Khajone, S. Deshmukh
{"title":"Ag-Doped TiO2: Synthesis, Characterization and Photodegradation of 4BS Dye","authors":"M. J. Pawar, V. Nimbalkar, A. D. Khajone, S. Deshmukh","doi":"10.30799/jnst.328.21070401","DOIUrl":null,"url":null,"abstract":"Ag doped TiO2 nanoparticles with different metallic content (0.0, 0.1, 0.15 and 0.2 wt.%) were prepared by using EDTA-Glycol method. For the sake of comparison blank TiO2 sample is also prepared using same method. All the samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). X-ray diffraction technique revealed that Ag-doped TiO2 has anatase structure and as the concentration of Ag increases the particle size will get decreases. The morphologies of TiO2 samples are influenced by doping Ag as shown by SEM images. The present work is mainly focused on the enhancement of photocatalytic reactivity of as synthesized samples by the photodegradation of 4BS under visible light irradiation using a LED lamp of (15 W) as a light source. A 96.3% of photodegradation of 4BS dye was achieved by utilizing 1 g/L of Ag-doped TiO2 at pH 6 for 100 min.","PeriodicalId":187599,"journal":{"name":"Journal of Nanoscience and Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoscience and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30799/jnst.328.21070401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ag doped TiO2 nanoparticles with different metallic content (0.0, 0.1, 0.15 and 0.2 wt.%) were prepared by using EDTA-Glycol method. For the sake of comparison blank TiO2 sample is also prepared using same method. All the samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). X-ray diffraction technique revealed that Ag-doped TiO2 has anatase structure and as the concentration of Ag increases the particle size will get decreases. The morphologies of TiO2 samples are influenced by doping Ag as shown by SEM images. The present work is mainly focused on the enhancement of photocatalytic reactivity of as synthesized samples by the photodegradation of 4BS under visible light irradiation using a LED lamp of (15 W) as a light source. A 96.3% of photodegradation of 4BS dye was achieved by utilizing 1 g/L of Ag-doped TiO2 at pH 6 for 100 min.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ag掺杂TiO2: 4BS染料的合成、表征及光降解
采用edta -乙二醇法制备了不同金属含量(0.0、0.1、0.15、0.2 wt.%)的Ag掺杂TiO2纳米粒子。为便于比较,采用相同的方法制备空白TiO2样品。采用x射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对样品进行了表征。x射线衍射技术表明,Ag掺杂的TiO2具有锐钛矿结构,随着Ag浓度的增加,TiO2的粒径逐渐减小。SEM图像显示,掺杂Ag对TiO2样品的形貌有影响。本文主要研究了以(15w)的LED灯为光源,在可见光照射下对4BS进行光降解,从而增强合成样品的光催化活性。1 g/L ag掺杂TiO2在pH 6条件下光降解100 min, 4BS染料的光降解率达到96.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
期刊最新文献
Review on Green Synthesis of Nanoparticles using Various Strong Electrolytic Metal Solutions Mediated by Various Plant Parts In-vivo Anti-Diabetic Efficacy of Silver Nanoparticles from Marine Brown Seaweed Colpomenia sinuosa on Alloxan Stimulated Hyperglycemic Activity in Wistar Albino Rats Ag-Doped TiO2: Synthesis, Characterization and Photodegradation of 4BS Dye Annealing Effect on Nanocrystalline SnO2 Thin Films Prepared by Spray Pyrolysis Technique Carbon Dot-Lanthanide Composite Based Smart Luminescent Anticounterfeiting Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1