Assessment of blast induced ground vibrations by artificial neural network

S. Kostić, N. Vasovic, I. Franović, A. Samčović, K. Todorović
{"title":"Assessment of blast induced ground vibrations by artificial neural network","authors":"S. Kostić, N. Vasovic, I. Franović, A. Samčović, K. Todorović","doi":"10.1109/NEUREL.2014.7011458","DOIUrl":null,"url":null,"abstract":"Blast-induced ground motion is analyzed by means of two prediction methods. First conventional approach assumes several types of nonlinear dependence of peak particle velocity on scaled distance from the explosion charge, while the second technique implements a feed-forward three-layer back-propagation neural network with three nodes in input layer (total charge, maximum charge per delay and distance from explosive charge to monitoring point) and only one node in output layer (peak particle velocity). As a result, traditional predictors give acceptable prediction accuracy (r>0.7) when compared with registered values of peak particle velocity. Regarding the forecasting accuracy estimated by neural network, model with nine hidden nodes gives reasonable predictive precision (r>0.9), with much lower standard error in comparison to conventional predictors.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Blast-induced ground motion is analyzed by means of two prediction methods. First conventional approach assumes several types of nonlinear dependence of peak particle velocity on scaled distance from the explosion charge, while the second technique implements a feed-forward three-layer back-propagation neural network with three nodes in input layer (total charge, maximum charge per delay and distance from explosive charge to monitoring point) and only one node in output layer (peak particle velocity). As a result, traditional predictors give acceptable prediction accuracy (r>0.7) when compared with registered values of peak particle velocity. Regarding the forecasting accuracy estimated by neural network, model with nine hidden nodes gives reasonable predictive precision (r>0.9), with much lower standard error in comparison to conventional predictors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用人工神经网络评价爆炸引起的地面振动
采用两种预测方法对爆破引起的地震动进行了分析。第一种传统方法假定峰值粒子速度与爆炸药量的比例距离有几种非线性关系,而第二种技术实现了一个前馈三层反向传播神经网络,输入层有三个节点(总药量、每延迟最大药量和从爆炸药量到监测点的距离),输出层只有一个节点(峰值粒子速度)。因此,与记录的粒子峰值速度值相比,传统预测器给出了可接受的预测精度(r>0.7)。对于神经网络估计的预测精度,具有9个隐藏节点的模型给出了合理的预测精度(r>0.9),与常规预测器相比,其标准误差要低得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifications of motor imagery tasks using k-nearest neighbors Neural network model for efficient localization of a number of mutually arbitrary positioned stochastic EM sources in far-field Clustering of time activity curves for uptake pattern assessment in dynamic nuclear medicine imaging Assessment of blast induced ground vibrations by artificial neural network Quantum-informational bases and frontiers of psychosomatic integrative medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1