Emotional Speech Classifier Systems: For Sensitive Assistance to support Disabled Individuals

V. V. Raju, P. Jain, K. Gurugubelli, A. Vuppala
{"title":"Emotional Speech Classifier Systems: For Sensitive Assistance to support Disabled Individuals","authors":"V. V. Raju, P. Jain, K. Gurugubelli, A. Vuppala","doi":"10.21437/SMM.2018-2","DOIUrl":null,"url":null,"abstract":"This paper provides the classification of emotionally annotated speech of mentally impaired people. The main problem encoun-tered in the classification task is the class-imbalance. This imbalance is due to the availability of large number of speech samples for the neutral speech compared to other emotional speech. Different sampling methodologies are explored at the back-end to handle this class-imbalance problem. Mel-frequency cepstral coefficients (MFCCs) features are considered at the front-end, deep neural networks (DNNs) and gradient boosted decision trees (GBDT) are investigated at the back-end as classifiers. The experimental results obtained from the EmotAsS dataset have shown higher classification accuracy and Unweighted Average Recall (UAR) scores over the baseline system.","PeriodicalId":158743,"journal":{"name":"Workshop on Speech, Music and Mind (SMM 2018)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Speech, Music and Mind (SMM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SMM.2018-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper provides the classification of emotionally annotated speech of mentally impaired people. The main problem encoun-tered in the classification task is the class-imbalance. This imbalance is due to the availability of large number of speech samples for the neutral speech compared to other emotional speech. Different sampling methodologies are explored at the back-end to handle this class-imbalance problem. Mel-frequency cepstral coefficients (MFCCs) features are considered at the front-end, deep neural networks (DNNs) and gradient boosted decision trees (GBDT) are investigated at the back-end as classifiers. The experimental results obtained from the EmotAsS dataset have shown higher classification accuracy and Unweighted Average Recall (UAR) scores over the baseline system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情感语音分类系统:用于支持残疾人的敏感援助
本文对智障人士的情感注释言语进行了分类。分类任务中遇到的主要问题是类不平衡。这种不平衡是由于与其他情绪言语相比,中性言语有大量的言语样本。在后端探索了不同的抽样方法来处理这种类不平衡问题。在前端考虑Mel-frequency倒谱系数(MFCCs)特征,在后端研究深度神经网络(dnn)和梯度增强决策树(GBDT)作为分类器。EmotAsS数据集的实验结果显示,与基线系统相比,EmotAsS的分类准确率和未加权平均召回率(UAR)得分更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-frequency spectral error for analysis of high arousal speech A component-based approach to study the effect of Indian music on emotions Analysis of Speech Emotions in Realistic Environments Emotional Speech Classifier Systems: For Sensitive Assistance to support Disabled Individuals Discriminating between High-Arousal and Low-Arousal Emotional States of Mind using Acoustic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1