An approximate L/sup 1/-difference algorithm for massive data streams

J. Feigenbaum, Sampath Kannan, M. Strauss, Mahesh Viswanathan
{"title":"An approximate L/sup 1/-difference algorithm for massive data streams","authors":"J. Feigenbaum, Sampath Kannan, M. Strauss, Mahesh Viswanathan","doi":"10.1109/SFFCS.1999.814623","DOIUrl":null,"url":null,"abstract":"We give a space-efficient, one-pass algorithm for approximating the L/sup 1/ difference /spl Sigma//sub i/|a/sub i/-b/sub i/| between two functions, when the function values a/sub i/ and b/sub i/ are given as data streams, and their order is chosen by an adversary. Our main technical innovation is a method of constructing families {V/sub j/} of limited independence random variables that are range summable by which we mean that /spl Sigma//sub j=0//sup c-1/ V/sub j/(s) is computable in time polylog(c), for all seeds s. These random variable families may be of interest outside our current application domain, i.e., massive data streams generated by communication networks. Our L/sup 1/-difference algorithm can be viewed as a \"sketching\" algorithm, in the sense of (A. Broder et al., 1998), and our algorithm performs better than that of Broder et al., when used to approximate the symmetric difference of two sets with small symmetric difference.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We give a space-efficient, one-pass algorithm for approximating the L/sup 1/ difference /spl Sigma//sub i/|a/sub i/-b/sub i/| between two functions, when the function values a/sub i/ and b/sub i/ are given as data streams, and their order is chosen by an adversary. Our main technical innovation is a method of constructing families {V/sub j/} of limited independence random variables that are range summable by which we mean that /spl Sigma//sub j=0//sup c-1/ V/sub j/(s) is computable in time polylog(c), for all seeds s. These random variable families may be of interest outside our current application domain, i.e., massive data streams generated by communication networks. Our L/sup 1/-difference algorithm can be viewed as a "sketching" algorithm, in the sense of (A. Broder et al., 1998), and our algorithm performs better than that of Broder et al., when used to approximate the symmetric difference of two sets with small symmetric difference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海量数据流的近似L/sup 1/差分算法
当函数值a/下标i/和b/下标i/作为数据流给出时,它们的顺序由对手选择,我们给出了一个节省空间的,一次通过的算法来近似两个函数之间的L/下标1/差分/spl Sigma//下标i/|a/下标i/-b/下标i/|。我们的主要技术创新是一种构造家族{V/sub j/}的有限独立随机变量的方法,这些随机变量是范围可求和的,我们的意思是/spl Sigma//sub j=0//sup c-1/ V/sub j/(s)在时间多元log(c)中是可计算的,对于所有种子s。这些随机变量家族可能在我们当前的应用领域之外感兴趣,即由通信网络生成的大量数据流。从(a . Broder et al., 1998)的意义上讲,我们的L/sup 1/-差分算法可以看作是一种“素描”算法,当用于近似两个对称差分较小的集合的对称差分时,我们的算法比Broder et al.的算法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markovian coupling vs. conductance for the Jerrum-Sinclair chain Fairness in routing and load balancing Reducing network congestion and blocking probability through balanced allocation Approximating fractional multicommodity flow independent of the number of commodities Random walks on truncated cubes and sampling 0-1 knapsack solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1