{"title":"A Sensitivity Analysis of Two Worst-Case Delay Computation Methods for SpaceWire Networks","authors":"Thomas Ferrandiz, F. Frances, C. Fraboul","doi":"10.1109/ECRTS.2012.35","DOIUrl":null,"url":null,"abstract":"Space Wire is a standard of on-board networks for satellites promoted by the ESA. As the ESA plans to use Space Wire as the sole network for both critical and non-critical traffics, network designers need tools to check that all the critical messages meet their deadlines. We previously proposed two such tools to compute an upper-bound on the worst-case end-to-end delay of a packet traversing a Space Wire network. The main contribution of this paper is the comparison of those two methods on a network configuration provided by Thales Alenia Space that is representative of next generation large satellites. The goal is to identify the key parameters that affect the bounds computed by the methods. We then conduct a sensitivity analysis on simpler network configurations to study the impact of those parameters on the methods and determine which method works better in different situations.","PeriodicalId":425794,"journal":{"name":"2012 24th Euromicro Conference on Real-Time Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECRTS.2012.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Space Wire is a standard of on-board networks for satellites promoted by the ESA. As the ESA plans to use Space Wire as the sole network for both critical and non-critical traffics, network designers need tools to check that all the critical messages meet their deadlines. We previously proposed two such tools to compute an upper-bound on the worst-case end-to-end delay of a packet traversing a Space Wire network. The main contribution of this paper is the comparison of those two methods on a network configuration provided by Thales Alenia Space that is representative of next generation large satellites. The goal is to identify the key parameters that affect the bounds computed by the methods. We then conduct a sensitivity analysis on simpler network configurations to study the impact of those parameters on the methods and determine which method works better in different situations.