Yuncheng Jiang, Zenghui Liu, Danjian Qian, Hao Zuo, Weiliang He, Jun Wang
{"title":"Robust Online Path Planning for Autonomous Vehicle Using Sequential Quadratic Programming","authors":"Yuncheng Jiang, Zenghui Liu, Danjian Qian, Hao Zuo, Weiliang He, Jun Wang","doi":"10.1109/iv51971.2022.9827017","DOIUrl":null,"url":null,"abstract":"In urban driving scenarios, it is a key component for autonomous vehicles to generate a smooth, kinodynamically feasible, and collision-free path. We present an optimization-based path planning method for autonomous vehicles navigating in cluttered environment, e.g., roads partially blocked by static or moving obstacles. Our method first computes a collision-free reference line using quadratic programming(QP), and then using the reference line as initial guess to generate a smooth and feasible path by iterative optimization using sequential quadratic programming(SQP). It works within a fractions of a second, thus permitting efficient regeneration.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In urban driving scenarios, it is a key component for autonomous vehicles to generate a smooth, kinodynamically feasible, and collision-free path. We present an optimization-based path planning method for autonomous vehicles navigating in cluttered environment, e.g., roads partially blocked by static or moving obstacles. Our method first computes a collision-free reference line using quadratic programming(QP), and then using the reference line as initial guess to generate a smooth and feasible path by iterative optimization using sequential quadratic programming(SQP). It works within a fractions of a second, thus permitting efficient regeneration.