A Simple and Tight Bayesian Lower Bound for Direction-of-Arrival Estimation

Ori Aharon, J. Tabrikian
{"title":"A Simple and Tight Bayesian Lower Bound for Direction-of-Arrival Estimation","authors":"Ori Aharon, J. Tabrikian","doi":"10.1109/SSP53291.2023.10207970","DOIUrl":null,"url":null,"abstract":"In this paper, a class of tight Bayesian bounds on the mean-squared-error is proposed. Tight bounds account for the contribution of sidelobes in the likelihood ratio or the ambiguity function. Since the distances between the main lobe and the sidelobes in the likelihood function may depend on the unknown parameter, a single, parameter-independent test-point may not be enough to provide a tight bound. In the proposed class of bounds, the shift test-points are substituted with arbitrary transformations, such that the same test-point can be uniformly optimal for the entire parameter space. The use of single testpoint simplifies the bound and allows providing insight into the considered problem. The proposed bound is applied to the problem of direction-of-arrival estimation using a linear array. Simulations show that the proposed bound accurately predicts the threshold phenomenon of the maximum a-posteriori probability estimator, and is tighter than the Weiss-Weinstein bound.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a class of tight Bayesian bounds on the mean-squared-error is proposed. Tight bounds account for the contribution of sidelobes in the likelihood ratio or the ambiguity function. Since the distances between the main lobe and the sidelobes in the likelihood function may depend on the unknown parameter, a single, parameter-independent test-point may not be enough to provide a tight bound. In the proposed class of bounds, the shift test-points are substituted with arbitrary transformations, such that the same test-point can be uniformly optimal for the entire parameter space. The use of single testpoint simplifies the bound and allows providing insight into the considered problem. The proposed bound is applied to the problem of direction-of-arrival estimation using a linear array. Simulations show that the proposed bound accurately predicts the threshold phenomenon of the maximum a-posteriori probability estimator, and is tighter than the Weiss-Weinstein bound.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
到达方向估计的简单严密贝叶斯下界
本文提出了均方误差上的一类紧贝叶斯界。紧边界解释了副瓣在似然比或模糊函数中的贡献。由于似然函数中主瓣和副瓣之间的距离可能取决于未知参数,因此单个与参数无关的测试点可能不足以提供一个紧密的边界。在所提出的界中,用任意变换替换移位测试点,使得同一测试点对整个参数空间都是一致最优的。单测试点的使用简化了边界,并允许深入了解所考虑的问题。将所提出的边界应用于线性阵列的到达方向估计问题。仿真结果表明,所提出的界能准确地预测最大后验概率估计器的阈值现象,并且比Weiss-Weinstein界更严格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1