Mandarin pitch accent prediction using hierarchical model based ensemble machine learning

Chongjia Ni, Wenju Liu, Bo Xu
{"title":"Mandarin pitch accent prediction using hierarchical model based ensemble machine learning","authors":"Chongjia Ni, Wenju Liu, Bo Xu","doi":"10.1109/YCICT.2009.5382357","DOIUrl":null,"url":null,"abstract":"In this study, we combine the Mandarin characteristics with Mandarin acoustic attribute and text information and use hierarchical model based ensemble machine learning to predict Mandarin pitch accent. Our model could make the best of advantages of prosody hierarchical structure and ensemble machine learning. When comparing our model with classification and regression tree (CART), support vector machine (SVM), adaboost with CART at different experimental conditions, the hierarchical model obtains the best results, it can achieve 84.75% accuracy rate to Mandarin read speech. At the same time, we compare our proposed method with previous proposed method at the same training set and test set. There are 2.25% and 0.82% absolute accuracy rate improvements.","PeriodicalId":138803,"journal":{"name":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2009.5382357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, we combine the Mandarin characteristics with Mandarin acoustic attribute and text information and use hierarchical model based ensemble machine learning to predict Mandarin pitch accent. Our model could make the best of advantages of prosody hierarchical structure and ensemble machine learning. When comparing our model with classification and regression tree (CART), support vector machine (SVM), adaboost with CART at different experimental conditions, the hierarchical model obtains the best results, it can achieve 84.75% accuracy rate to Mandarin read speech. At the same time, we compare our proposed method with previous proposed method at the same training set and test set. There are 2.25% and 0.82% absolute accuracy rate improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次模型的集成机器学习的普通话音高重音预测
在本研究中,我们将普通话特征与普通话声学属性和文本信息结合起来,使用基于层次模型的集成机器学习来预测普通话音高重音。我们的模型可以充分利用韵律层次结构和集成机器学习的优势。将我们的模型与分类回归树(CART)、支持向量机(SVM)、adaboost与CART在不同的实验条件下进行比较,层次模型得到了最好的结果,它对普通话读语音的准确率达到84.75%。同时,在相同的训练集和测试集上,我们将所提出的方法与之前提出的方法进行了比较。绝对准确率分别提高2.25%和0.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation study of queues' length balance in CICQ switching fabrics Stereo-motion estimation for visual object tracking Regularization of orthogonal neural networks using fractional derivatives System identifiability for sparse and nonuniform samples via spectral analysis A probabilistic filter protocol for Continuous Nearest-Neighbor Query
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1