Computational Complexity Analysis of Cognitive Radio using PCA with Various Clustering Methods

Todor D. Tsvetkov, I. Iliev
{"title":"Computational Complexity Analysis of Cognitive Radio using PCA with Various Clustering Methods","authors":"Todor D. Tsvetkov, I. Iliev","doi":"10.1109/TELECOM50385.2020.9299558","DOIUrl":null,"url":null,"abstract":"In this article we examine various clustering methods suitable for signal processing from wide frequency range. Partitioning and hierarchical clustering techniques are used. The research is done on the basis of cluster size, signal to noise ratio and relative computational time. Significant reduction in processing power is achieved by applying preprocessing using principal component analysis. The goal of this article is to improve quality parameters for cognitive radio systems by using preprocessing and cluster analysis.","PeriodicalId":300010,"journal":{"name":"2020 28th National Conference with International Participation (TELECOM)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th National Conference with International Participation (TELECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELECOM50385.2020.9299558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article we examine various clustering methods suitable for signal processing from wide frequency range. Partitioning and hierarchical clustering techniques are used. The research is done on the basis of cluster size, signal to noise ratio and relative computational time. Significant reduction in processing power is achieved by applying preprocessing using principal component analysis. The goal of this article is to improve quality parameters for cognitive radio systems by using preprocessing and cluster analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PCA和不同聚类方法的认知无线电计算复杂度分析
本文研究了适用于宽频率范围信号处理的各种聚类方法。使用了分区和分层聚类技术。研究的基础是聚类大小、信噪比和相对计算时间。采用主成分分析进行预处理,显著降低了处理能力。本文的目的是通过预处理和聚类分析来提高认知无线电系统的质量参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Queueing Systems with a Polya Arrival Process [Copyright notice] Exploring the Congestion Level Index for Defining the QoS Performance Profile of Internet Paths Simulation Investigation of a Power Amplifier Circuit for Measurements of Power Losses in Soft Magnetic Materials Computational Complexity Analysis of Cognitive Radio using PCA with Various Clustering Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1