Connoisseur: classification of styles of Mexican architectural heritage with deep learning and visual attention prediction

A. M. Obeso, M. García-Vázquez, A. A. Ramírez-Acosta, J. Benois-Pineau
{"title":"Connoisseur: classification of styles of Mexican architectural heritage with deep learning and visual attention prediction","authors":"A. M. Obeso, M. García-Vázquez, A. A. Ramírez-Acosta, J. Benois-Pineau","doi":"10.1145/3095713.3095730","DOIUrl":null,"url":null,"abstract":"The automatic description of multimedia content was mainly developed for classification tasks, retrieval systems and massive ordering of data. Preservation of cultural heritage is a field of high importance for application to this method. Our problem is classification of architectural styles of buildings in digital photographs of Mexican cultural heritage. The selection of relevant content in the scene for training classification models allows them to be more precise in the classification task. Here we use a saliency-driven approach to predict visual attention in images and use it to train a Convolutional Neural Network to identify the architectural style of Mexican buildings. Also, we present an analysis of the behavior of the models trained under the traditional cropped image and the prominence maps. In this sense, we show that the performance of the saliency-based CNNs is better than the traditional training reaching a classification rate of 97% in validation dataset. It is considered that style identification with this technique can make a wide contribution in video description tasks, specifically in the automatic documentation of Mexican cultural heritage.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The automatic description of multimedia content was mainly developed for classification tasks, retrieval systems and massive ordering of data. Preservation of cultural heritage is a field of high importance for application to this method. Our problem is classification of architectural styles of buildings in digital photographs of Mexican cultural heritage. The selection of relevant content in the scene for training classification models allows them to be more precise in the classification task. Here we use a saliency-driven approach to predict visual attention in images and use it to train a Convolutional Neural Network to identify the architectural style of Mexican buildings. Also, we present an analysis of the behavior of the models trained under the traditional cropped image and the prominence maps. In this sense, we show that the performance of the saliency-based CNNs is better than the traditional training reaching a classification rate of 97% in validation dataset. It is considered that style identification with this technique can make a wide contribution in video description tasks, specifically in the automatic documentation of Mexican cultural heritage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鉴赏家:用深度学习和视觉注意力预测对墨西哥建筑遗产的风格进行分类
多媒体内容的自动描述主要是为分类任务、检索系统和海量数据排序而开发的。文化遗产保护是应用该方法的一个非常重要的领域。我们的问题是在墨西哥文化遗产的数码照片中对建筑风格进行分类。在场景中选择相关内容进行训练分类模型,可以使分类模型在分类任务中更加精确。在这里,我们使用显著性驱动的方法来预测图像中的视觉注意力,并使用它来训练卷积神经网络来识别墨西哥建筑的建筑风格。此外,我们还分析了在传统裁剪图像和突出映射下训练的模型的行为。从这个意义上说,我们表明基于显著性的cnn的性能优于传统训练,在验证数据集中达到97%的分类率。人们认为,这种技术的风格识别可以在视频描述任务中做出广泛的贡献,特别是在墨西哥文化遗产的自动记录中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tag Propagation Approaches within Speaking Face Graphs for Multimodal Person Discovery A free Web API for single and multi-document summarization Visualizing weakly-Annotated Multi-label Mayan Inscriptions with Supervised t-SNE Prediction of User Demographics from Music Listening Habits Detecting adversarial example attacks to deep neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1