Semi-Synthetic Data Augmentation of Scanned Historical Documents

Romain Karpinski, A. Belaïd
{"title":"Semi-Synthetic Data Augmentation of Scanned Historical Documents","authors":"Romain Karpinski, A. Belaïd","doi":"10.1109/ICDAR.2019.00051","DOIUrl":null,"url":null,"abstract":"This paper proposes a fully automatic new method for generating semi-synthetic images of historical documents to increase the number of training samples in small datasets. This method extracts and mixes background only images (BOI) with text only images (TOI) issued from two different sources to create semi-synthetic images. The TOIs are extracted with the help of a binary mask obtained by binarizing the image. The BOIs are reconstructed from the original image by replacing TOI pixels using an inpainting method. Finally, a TOI can be efficiently integrated in a BOI using the gradient domain, thus creating a new semi-synthetic image. The idea behind this technique is to automatically obtain documents close to real ones with different backgrounds to highlight the content. Experiments are conducted on the public HisDB dataset which contains few labeled images. We show that the proposed method improves the performance results of a semantic segmentation and baseline extraction task.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"21 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a fully automatic new method for generating semi-synthetic images of historical documents to increase the number of training samples in small datasets. This method extracts and mixes background only images (BOI) with text only images (TOI) issued from two different sources to create semi-synthetic images. The TOIs are extracted with the help of a binary mask obtained by binarizing the image. The BOIs are reconstructed from the original image by replacing TOI pixels using an inpainting method. Finally, a TOI can be efficiently integrated in a BOI using the gradient domain, thus creating a new semi-synthetic image. The idea behind this technique is to automatically obtain documents close to real ones with different backgrounds to highlight the content. Experiments are conducted on the public HisDB dataset which contains few labeled images. We show that the proposed method improves the performance results of a semantic segmentation and baseline extraction task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扫描历史文献的半合成数据增强
本文提出了一种全自动生成历史文献半合成图像的新方法,以增加小数据集的训练样本数量。该方法提取并混合来自两个不同来源的纯背景图像(BOI)和纯文本图像(TOI),以创建半合成图像。通过对图像进行二值化得到的二值掩模来提取toi。boi是由原始图像通过替换TOI像素使用一种油漆方法重建。最后,利用梯度域将TOI有效地集成到BOI中,从而生成新的半合成图像。这种技术背后的思想是自动获取具有不同背景的接近真实文档的文档,以突出显示内容。实验在包含少量标记图像的公共HisDB数据集上进行。我们证明了该方法提高了语义分割和基线提取任务的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Article Segmentation in Digitised Newspapers with a 2D Markov Model ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images DICE: Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis Blind Source Separation Based Framework for Multispectral Document Images Binarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1