{"title":"Universal device pairing using an auxiliary device","authors":"Nitesh Saxena, Md. Borhan Uddin, Jonathan Voris","doi":"10.1145/1408664.1408672","DOIUrl":null,"url":null,"abstract":"The operation of achieving authenticated key agreement between two human-operated devices over a short-range wireless communication channel (such as Bluetooth or WiFi) is referred to as \"Pairing\". The devices in such a scenario are ad hoc in nature, i.e., they can neither be assumed to have a prior context (such as pre-shared secrets) with each other nor do they share a common trusted on- or off-line authority. However, the devices can generally be connected using auxiliary physical channel(s) (such as audio, visual, etc.) that can be authenticated by the device user(s) and thus form a basis for pairing.\n One of the main challenges of secure device pairing is the lack of good quality output interfaces as well as corresponding receivers on devices. In [13], we presented a pairing scheme which is universally applicable to any pair of devices (such as a WiFi AP and a laptop, a Bluetooth keyboard and a desktop, etc.). The scheme is based upon the device user(s) comparing short and simple synchronized audiovisual patterns, such as \"beeping\" and \"blinking\". In this paper, we automate the (manual) scheme of [13] by making use of an auxiliary, commonly available device such as a personal camera phone. Based on a preliminary user study we conducted, we show that the automated scheme is generally faster and more user-friendly relative to the manual scheme. More importantly, the proposed scheme turns out to be quite accurate in the detection of any possible attacks.","PeriodicalId":273244,"journal":{"name":"Symposium On Usable Privacy and Security","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium On Usable Privacy and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1408664.1408672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
The operation of achieving authenticated key agreement between two human-operated devices over a short-range wireless communication channel (such as Bluetooth or WiFi) is referred to as "Pairing". The devices in such a scenario are ad hoc in nature, i.e., they can neither be assumed to have a prior context (such as pre-shared secrets) with each other nor do they share a common trusted on- or off-line authority. However, the devices can generally be connected using auxiliary physical channel(s) (such as audio, visual, etc.) that can be authenticated by the device user(s) and thus form a basis for pairing.
One of the main challenges of secure device pairing is the lack of good quality output interfaces as well as corresponding receivers on devices. In [13], we presented a pairing scheme which is universally applicable to any pair of devices (such as a WiFi AP and a laptop, a Bluetooth keyboard and a desktop, etc.). The scheme is based upon the device user(s) comparing short and simple synchronized audiovisual patterns, such as "beeping" and "blinking". In this paper, we automate the (manual) scheme of [13] by making use of an auxiliary, commonly available device such as a personal camera phone. Based on a preliminary user study we conducted, we show that the automated scheme is generally faster and more user-friendly relative to the manual scheme. More importantly, the proposed scheme turns out to be quite accurate in the detection of any possible attacks.