On condition monitoring of high frequency power GaN converters with adaptive prognostics

Mehrdad Biglarbegian, Saman Mostafavi, Sven Hauer, S. J. Nibir, Namwon Kim, R. Cox, B. Parkhideh
{"title":"On condition monitoring of high frequency power GaN converters with adaptive prognostics","authors":"Mehrdad Biglarbegian, Saman Mostafavi, Sven Hauer, S. J. Nibir, Namwon Kim, R. Cox, B. Parkhideh","doi":"10.1109/APEC.2018.8341180","DOIUrl":null,"url":null,"abstract":"There is no doubt that in the future, a need for higher switching frequency is inevitable to extract the full benefits of reliable Gallium Nitride (GaN) device characteristics. Along with the reliability enhancement for GaN-based power converters, it is essential to monitor a precursor signature identification for diagnostics/prognostics techniques. With the availability of the most granular information deduced from advanced devices, a new data-driven scheme is proposed for system monitoring and possible lifetime extension of 400W power GaN converters at 100kHz. The approach relies on the real-time Rds(on) data extraction from the power converter, and calibration of an adaptive model using multi-physics co-simulations under thermal cycling. More specifically, the focus is on deploying machine learning algorithms to exploit for the parameter estimation in power electronics engineering reliability.","PeriodicalId":113756,"journal":{"name":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"63 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2018.8341180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

There is no doubt that in the future, a need for higher switching frequency is inevitable to extract the full benefits of reliable Gallium Nitride (GaN) device characteristics. Along with the reliability enhancement for GaN-based power converters, it is essential to monitor a precursor signature identification for diagnostics/prognostics techniques. With the availability of the most granular information deduced from advanced devices, a new data-driven scheme is proposed for system monitoring and possible lifetime extension of 400W power GaN converters at 100kHz. The approach relies on the real-time Rds(on) data extraction from the power converter, and calibration of an adaptive model using multi-physics co-simulations under thermal cycling. More specifically, the focus is on deploying machine learning algorithms to exploit for the parameter estimation in power electronics engineering reliability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应预测的高频功率GaN变换器状态监测研究
毫无疑问,在未来,需要更高的开关频率来提取可靠的氮化镓(GaN)器件特性的全部好处是不可避免的。随着基于氮化镓的功率转换器可靠性的提高,监测前体特征识别对于诊断/预测技术至关重要。利用从先进器件中获得的最精细的信息,提出了一种新的数据驱动方案,用于400W功率GaN变换器在100kHz时的系统监测和可能的寿命延长。该方法依赖于从功率转换器中实时提取Rds(on)数据,并使用热循环下的多物理场联合模拟对自适应模型进行校准。更具体地说,重点是利用机器学习算法来开发电力电子工程可靠性的参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Duty phase shift technique for extended-duty-ratio boost converter for reducing device voltage stress over wider operating range Reliability evaluation of an impedance-source PV microconverter A hybrid flyback LED driver with utility grid and renewable energy interface A transformerless single-phase symmetrical Z-source HERIC inverter with reduced leakage currents for PV systems A carrier magnitude varying modulation for distributed static series compensator to achieve a maximum reactive power generating capability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1