Concurrent Stereo under Photometric Image Distortions

G. Gimel'farb, Jiang Li, John Morris, P. Delmas
{"title":"Concurrent Stereo under Photometric Image Distortions","authors":"G. Gimel'farb, Jiang Li, John Morris, P. Delmas","doi":"10.1109/ICPR.2006.401","DOIUrl":null,"url":null,"abstract":"We have improved our concurrent stereo matching (CSM) algorithm, which abandons the search for 'best' matches and determine matches that lie within admissible ranges using a noise model. We estimate photometric deviations between corresponding regions of stereo pairs with photometric transformations and mismatched or occluded regions. We allow for global, disparity dependent contrast and offset (gain and dark noise) distortions as well as multiple outliers. Noise is estimated for each pixel at each disparity level and the CSM framework applied. Outliers are eliminated with a statistical model and likely matching volumes identified. Then, starting in the foreground, the volumes are explored to select mutually consistent optical surfaces. Finally, local, not global, surface continuity and visibility constraints are applied to generate a disparity map. This approach compares well with other matching algorithms: the more realistic matching model allows for signal contrast and offset variations over the whole image","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We have improved our concurrent stereo matching (CSM) algorithm, which abandons the search for 'best' matches and determine matches that lie within admissible ranges using a noise model. We estimate photometric deviations between corresponding regions of stereo pairs with photometric transformations and mismatched or occluded regions. We allow for global, disparity dependent contrast and offset (gain and dark noise) distortions as well as multiple outliers. Noise is estimated for each pixel at each disparity level and the CSM framework applied. Outliers are eliminated with a statistical model and likely matching volumes identified. Then, starting in the foreground, the volumes are explored to select mutually consistent optical surfaces. Finally, local, not global, surface continuity and visibility constraints are applied to generate a disparity map. This approach compares well with other matching algorithms: the more realistic matching model allows for signal contrast and offset variations over the whole image
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光度图像失真下的并行立体
我们改进了并发立体匹配(CSM)算法,该算法放弃搜索“最佳”匹配,并使用噪声模型确定在可接受范围内的匹配。我们估算了具有光度变换的立体对的相应区域和不匹配或遮挡区域之间的光度偏差。我们允许全局,视差依赖的对比度和偏移(增益和暗噪声)失真以及多个异常值。在每个视差水平上估计每个像素的噪声,并应用CSM框架。用统计模型和可能匹配的体积来消除异常值。然后,从前景开始,探索体块以选择相互一致的光学表面。最后,应用局部而非全局的表面连续性和可见性约束来生成视差图。这种方法与其他匹配算法相比效果更好:更真实的匹配模型允许整个图像的信号对比度和偏移变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Human Body Parts Using Deformable Triangulation Noise Variance Adaptive SEA for Motion Estimation: A Two-Stage Schema A Hybrid Recognition Scheme Based on Partially Labeled SOM and MLP A Captcha Mechanism By Exchange Image Blocks Rectification with Intersecting Optical Axes for Stereoscopic Visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1