Advanced Physics of Thermoelectric Generators and Photovoltaic Cells

S. Abdelhady
{"title":"Advanced Physics of Thermoelectric Generators and Photovoltaic Cells","authors":"S. Abdelhady","doi":"10.11648/J.AJPA.20180605.14","DOIUrl":null,"url":null,"abstract":"The measured efficiencies of modern photovoltaic solar cells that exceed the limit determined by Shockley and Queisser indicate a need for advanced physics to solve such conflict. Similarly, the duality confusion represents another conflict that acquires new physics. Such conflicts and confusions were recently solved by using an innovative definition of the nature of electric current as electromagnetic waves of electric potential. This definition was used to find also plausible physical explanation of the results of Tesla’s experiment of transmission of electric power in space and the success of Faraday in polarizing light by electric field in one of his experiments. Additionally, literature failed to find plausible physical explanation of estimating the electric potential of the output electric current from thermopiles and thermoelectric generators as the sum of electric potentials gained in crossing the junctions of these devices. It is shown in this paper that the introduced nature of electric current leads to advanced and plausible physical explanation of such results. It is shown also in this paper that the electric potential of the output electric current from multijunction photovoltaic cells can be estimated, similar to the thermopiles and TEG, as sum of electric potentials gained in crossing the junctions of these cells. Such similarity between the relations applied in estimating the gained potentials in all these multijunction-devices in addition to the relation found by Goldsmid and Sharp between the Seebeck coefficient and the energy bandgap prove that the Photovoltaic effect and the Seebeck effect corresponds simply to the same phenomenon. In other words; the gained potential in photovoltaic cells is generated by the thermal potential of the incident radiation and the difference of the Seebeck coefficients of the materials of its junctions. Such advanced physics may represent a gateway to understand other phenomena in the nature.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20180605.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The measured efficiencies of modern photovoltaic solar cells that exceed the limit determined by Shockley and Queisser indicate a need for advanced physics to solve such conflict. Similarly, the duality confusion represents another conflict that acquires new physics. Such conflicts and confusions were recently solved by using an innovative definition of the nature of electric current as electromagnetic waves of electric potential. This definition was used to find also plausible physical explanation of the results of Tesla’s experiment of transmission of electric power in space and the success of Faraday in polarizing light by electric field in one of his experiments. Additionally, literature failed to find plausible physical explanation of estimating the electric potential of the output electric current from thermopiles and thermoelectric generators as the sum of electric potentials gained in crossing the junctions of these devices. It is shown in this paper that the introduced nature of electric current leads to advanced and plausible physical explanation of such results. It is shown also in this paper that the electric potential of the output electric current from multijunction photovoltaic cells can be estimated, similar to the thermopiles and TEG, as sum of electric potentials gained in crossing the junctions of these cells. Such similarity between the relations applied in estimating the gained potentials in all these multijunction-devices in addition to the relation found by Goldsmid and Sharp between the Seebeck coefficient and the energy bandgap prove that the Photovoltaic effect and the Seebeck effect corresponds simply to the same phenomenon. In other words; the gained potential in photovoltaic cells is generated by the thermal potential of the incident radiation and the difference of the Seebeck coefficients of the materials of its junctions. Such advanced physics may represent a gateway to understand other phenomena in the nature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热电发电机和光伏电池高级物理
现代光伏太阳能电池的测量效率超过了肖克利和奎瑟确定的极限,这表明需要先进的物理学来解决这种冲突。同样,二元性的混淆代表了另一种获得新物理学的冲突。这种矛盾和困惑最近得到了解决,因为人们采用了一种创新的定义,将电流的性质定义为电势的电磁波。这个定义也被用来寻找对特斯拉在空间中传输电力的实验结果和法拉第在他的一个实验中通过电场偏振光的成功的合理的物理解释。此外,文献没有找到合理的物理解释来估计热电堆和热电发电机输出电流的电势,作为通过这些装置的连接处获得的电势之和。本文指出,引入电流的性质,可以对这些结果作出先进而合理的物理解释。本文还表明,与热电堆和TEG类似,多结光伏电池输出电流的电势可以估计为通过这些电池的结获得的电势之和。除了Goldsmid和Sharp发现的塞贝克系数与能带隙之间的关系之外,用于估计所有这些多结器件中获得的势的关系之间的这种相似性证明了光伏效应和塞贝克效应对应于相同的现象。换句话说;光伏电池中获得的电势是由入射辐射的热势和其结材料的塞贝克系数的差异产生的。这种先进的物理学可能是理解自然界其他现象的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of High Gain Single Stage Telescopic Cmos Operational Amplifier Evaluation of the Risk Associated with Drinkable Water Sources Through Analysis of Gross Alpha and Beta Radioactivity Levels in Chosen Locations, Mubi – North Heat Transfer Behavior of a PTC Receiver Tube Using Transversal Focal Inserts and CFD Electronic and Mechanical Properties of Chemical Bonds (A-O & B-O) in Cubic Phase A+2B+4O3 Perovskite Oxides An Energy Criterion for Rheological Failure of Rock and Application in Stability Analysis of Natural High Slope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1