Temporal Proximity Filtering

Arun Kumar, Karan Aggarwal, Paul Schrater
{"title":"Temporal Proximity Filtering","authors":"Arun Kumar, Karan Aggarwal, Paul Schrater","doi":"10.1145/3290607.3312818","DOIUrl":null,"url":null,"abstract":"Users bundle the consumption of their favorite content in temporal proximity to each other, according to their preferences and tastes. Thus, the underlying attributes of items implicitly match user preferences. However, current recommender systems largely ignore this fundamental driver in identifying matching items. In this work, we introduce a novel temporal proximity filtering method to enable items-matching. First, we demonstrate that proximity preferences exist. Second, we present a temporal proximity induced similarity metric driven by user tastes, and third, we show that this induced similarity can be used to learn items pairwise similarity in attribute space. The proposed model does not rely on any knowledge outside users' consumption and provide a novel way to devise user preferences and tastes driven novel items recommender.","PeriodicalId":389485,"journal":{"name":"Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290607.3312818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Users bundle the consumption of their favorite content in temporal proximity to each other, according to their preferences and tastes. Thus, the underlying attributes of items implicitly match user preferences. However, current recommender systems largely ignore this fundamental driver in identifying matching items. In this work, we introduce a novel temporal proximity filtering method to enable items-matching. First, we demonstrate that proximity preferences exist. Second, we present a temporal proximity induced similarity metric driven by user tastes, and third, we show that this induced similarity can be used to learn items pairwise similarity in attribute space. The proposed model does not rely on any knowledge outside users' consumption and provide a novel way to devise user preferences and tastes driven novel items recommender.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间邻近滤波
用户根据自己的喜好和品味,将自己喜欢的内容捆绑在一起消费。因此,项目的底层属性隐式地匹配用户首选项。然而,目前的推荐系统在很大程度上忽略了识别匹配项的基本驱动因素。在这项工作中,我们引入了一种新的时间接近滤波方法来实现项目匹配。首先,我们证明了邻近偏好的存在。其次,我们提出了一个由用户品味驱动的时间邻近诱导相似度度量,第三,我们证明了这种诱导相似度可以用来学习属性空间中的物品两两相似度。该模型不依赖于用户消费之外的任何知识,并提供了一种新颖的方法来设计用户偏好和口味驱动的新奇物品推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROOT Towards Novel Urban Planning Methods -- Using Eye-tracking Systems to Understand Human Attention in Urban Environments Amor Augmenting Circle Dance with Physical Computing Player Types of Gamers: Critical Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1