Generating Presence-Absence Matrices by Quantum Annealing

P. Codognet
{"title":"Generating Presence-Absence Matrices by Quantum Annealing","authors":"P. Codognet","doi":"10.1109/Q-SE59154.2023.00008","DOIUrl":null,"url":null,"abstract":"We consider the problem of generating binary matrices with fixed sums for their rows and columns coefficients, i.e. with fixed margins. Such presence-absence (0/1) matrices are widely used in ecological research, for instance to represent the presence or absence of particular species in a particular habitat. Generating random matrices with fixed sums for their rows and their columns is an important issue in order to compare some given matrix presenting field data versus randomly generated matrices with similar characteristics (same sums on rows and columns) in order to test some hypothesis, i.e. when performing null model statistical analysis. We propose to model this problem in QUBO (Quadratic Unconstrained Binary Optimization) in order to solve it by quantum annealing. QUBO is the input language of quantum computers based on quantum annealing such as the D-Wave systems and of “quantum-inspired” annealing solvers based on dedicated classical hardware. We present some experimental results achieved on the D-Wave Advantage quantum computer and on the Fixstars Amplify Annealing Engine.","PeriodicalId":276685,"journal":{"name":"2023 IEEE/ACM 4th International Workshop on Quantum Software Engineering (Q-SE)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 4th International Workshop on Quantum Software Engineering (Q-SE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Q-SE59154.2023.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of generating binary matrices with fixed sums for their rows and columns coefficients, i.e. with fixed margins. Such presence-absence (0/1) matrices are widely used in ecological research, for instance to represent the presence or absence of particular species in a particular habitat. Generating random matrices with fixed sums for their rows and their columns is an important issue in order to compare some given matrix presenting field data versus randomly generated matrices with similar characteristics (same sums on rows and columns) in order to test some hypothesis, i.e. when performing null model statistical analysis. We propose to model this problem in QUBO (Quadratic Unconstrained Binary Optimization) in order to solve it by quantum annealing. QUBO is the input language of quantum computers based on quantum annealing such as the D-Wave systems and of “quantum-inspired” annealing solvers based on dedicated classical hardware. We present some experimental results achieved on the D-Wave Advantage quantum computer and on the Fixstars Amplify Annealing Engine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用量子退火法生成存在-缺席矩阵
我们考虑生成行和列系数固定和,即固定边距的二元矩阵的问题。这种存在-缺失(0/1)矩阵在生态研究中被广泛使用,例如表示特定栖息地中特定物种的存在或缺失。生成具有固定行和列之和的随机矩阵是一个重要的问题,以便比较一些给定的呈现字段数据的矩阵与具有相似特征(行和列之和相同)的随机生成的矩阵,以便测试一些假设,即在执行零模型统计分析时。我们提出在QUBO(二次无约束二元优化)中对该问题进行建模,以便用量子退火方法求解。QUBO是基于量子退火的量子计算机(如D-Wave系统)和基于专用经典硬件的“量子启发”退火求解器的输入语言。我们介绍了在D-Wave Advantage量子计算机和Fixstars放大退火引擎上取得的一些实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generating Presence-Absence Matrices by Quantum Annealing Dynamic Output State Classification for Quantum Computers Can Quantum Computing Improve Uniform Random Sampling of Large Configuration Spaces? Static Entanglement Analysis of Quantum Programs QChecker: Detecting Bugs in Quantum Programs via Static Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1