Automatic goal-oriented test data generation using a Genetic algorithm and simulated annealing

Mukesh Mann, O. Sangwan, P. Tomar, Shivani Singh
{"title":"Automatic goal-oriented test data generation using a Genetic algorithm and simulated annealing","authors":"Mukesh Mann, O. Sangwan, P. Tomar, Shivani Singh","doi":"10.1109/CONFLUENCE.2016.7508052","DOIUrl":null,"url":null,"abstract":"The literature on automatic test case generation has significantly arguments its importance in software testing. The solution to this un-decidable problem can reduce the financial resources spent in testing a software system. In this paper Evolutionary Genetic algorithm and simulated annealing based approach for automatic test case generation is presented. The fitness of target goal is achieved by instrumenting the program using branch distance approach and the generated test cases using genetic algorithm and simulated annealing are evaluated and compared in terms of 1) number of generation needed to reach to the target goal and 2) The time taken to generate test cases.","PeriodicalId":299044,"journal":{"name":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2016.7508052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The literature on automatic test case generation has significantly arguments its importance in software testing. The solution to this un-decidable problem can reduce the financial resources spent in testing a software system. In this paper Evolutionary Genetic algorithm and simulated annealing based approach for automatic test case generation is presented. The fitness of target goal is achieved by instrumenting the program using branch distance approach and the generated test cases using genetic algorithm and simulated annealing are evaluated and compared in terms of 1) number of generation needed to reach to the target goal and 2) The time taken to generate test cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用遗传算法和模拟退火技术实现面向目标的测试数据自动生成
关于自动测试用例生成的文献对其在软件测试中的重要性有着重要的争论。这个不确定问题的解决方案可以减少用于测试软件系统的财务资源。本文提出了一种基于进化遗传算法和模拟退火的测试用例自动生成方法。采用分支距离法对程序进行检测,得到了目标目标的适应度,并对采用遗传算法和模拟退火生成的测试用例进行了评估和比较,包括:1)达到目标目标所需的生成次数和2)生成测试用例所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big Data capabilities and readiness of South African retail organisations Heuristic model to improve Feature Selection based on Machine Learning in Data Mining Image processing based degraded camera captured document enhancement for improved OCR accuracy Development of IoT based smart security and monitoring devices for agriculture A comprehensive study on Facial Expressions Recognition Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1