Performance Analysis of VGG19 Deep Learning Network Based Brain Image Fusion

Vijayarajan Rajangam, S. N., K. R., K. Mallikarjuna
{"title":"Performance Analysis of VGG19 Deep Learning Network Based Brain Image Fusion","authors":"Vijayarajan Rajangam, S. N., K. R., K. Mallikarjuna","doi":"10.4018/978-1-7998-6690-9.ch008","DOIUrl":null,"url":null,"abstract":"Multimodal imaging systems assist medical practitioners in cost-effective diagnostic methods in clinical pathologies. Multimodal imaging of the same organ or the region of interest reveals complementing anatomical and functional details. Multimodal image fusion algorithms integrate complementary image details into a composite image that reduces clinician's time for effective diagnosis. Deep learning networks have their role in feature extraction for the fusion of multimodal images. This chapter analyzes the performance of a pre-trained VGG19 deep learning network that extracts features from the base and detail layers of the source images for constructing a weight map to fuse the source image details. Maximum and averaging fusion rules are adopted for base layer fusion. The performance of the fusion algorithm for multimodal medical image fusion is analyzed by peak signal to noise ratio, structural similarity index, fusion factor, and figure of merit. Performance analysis of the fusion algorithms is also carried out for the source images with the presence of impulse and Gaussian noise.","PeriodicalId":346792,"journal":{"name":"Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-6690-9.ch008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Multimodal imaging systems assist medical practitioners in cost-effective diagnostic methods in clinical pathologies. Multimodal imaging of the same organ or the region of interest reveals complementing anatomical and functional details. Multimodal image fusion algorithms integrate complementary image details into a composite image that reduces clinician's time for effective diagnosis. Deep learning networks have their role in feature extraction for the fusion of multimodal images. This chapter analyzes the performance of a pre-trained VGG19 deep learning network that extracts features from the base and detail layers of the source images for constructing a weight map to fuse the source image details. Maximum and averaging fusion rules are adopted for base layer fusion. The performance of the fusion algorithm for multimodal medical image fusion is analyzed by peak signal to noise ratio, structural similarity index, fusion factor, and figure of merit. Performance analysis of the fusion algorithms is also carried out for the source images with the presence of impulse and Gaussian noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于VGG19深度学习网络的脑图像融合性能分析
多模式成像系统协助医疗从业者在成本效益的诊断方法在临床病理。同一器官或感兴趣区域的多模态成像显示互补的解剖和功能细节。多模态图像融合算法将互补的图像细节集成到合成图像中,减少了临床医生进行有效诊断的时间。深度学习网络在多模态图像融合的特征提取中发挥着重要作用。本章分析了预训练的VGG19深度学习网络的性能,该网络从源图像的基层和细节层中提取特征,用于构建权重映射以融合源图像细节。基层融合采用最大融合规则和平均融合规则。从峰值信噪比、结构相似度、融合系数和优度等方面分析了多模态医学图像融合算法的性能。对存在脉冲和高斯噪声的源图像进行了融合算法的性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis of VGG19 Deep Learning Network Based Brain Image Fusion Breast Cancer Detection Using Random Forest Classifier Facial Expression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1