HMMer-Cell: High Performance Protein Profile Searching on the Cell/B.E. Processor

Jizhu Lu, M. Perrone, K. Albayraktaroglu, M. Franklin
{"title":"HMMer-Cell: High Performance Protein Profile Searching on the Cell/B.E. Processor","authors":"Jizhu Lu, M. Perrone, K. Albayraktaroglu, M. Franklin","doi":"10.1109/ISPASS.2008.4510754","DOIUrl":null,"url":null,"abstract":"This paper presents HMMer-Cell, an implementation of the computationally intensive bioinformatics application HMMER on the Cell/B.E. multiprocessor architecture. The core of the HMMER workload is the Plan7 Viterbi algorithm, which has a memory requirement of O(N*M) where N is the length of the HMM and M is the length of the input sequence length. The main challenge in implementing the Plan7 Viterbi algorithm on the novel Cell/B.E. multiprocessor is the limited local storage space of the Cell/B.E. SPEs (synergistic processing element). We describe our approach to modifying the Viterbi algorithm to reduce the space complexity from 0(M*N) to O(N). We then proceed to discuss design considerations such as task parallelization and code partitioning, in addition to other optimizations we used to implement HMMer-Cell. We demonstrate near-linear speedup when processing relatively larger HMM profiles; and compare our results to those obtained on commodity x86 processors.","PeriodicalId":137239,"journal":{"name":"ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and software","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2008.4510754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents HMMer-Cell, an implementation of the computationally intensive bioinformatics application HMMER on the Cell/B.E. multiprocessor architecture. The core of the HMMER workload is the Plan7 Viterbi algorithm, which has a memory requirement of O(N*M) where N is the length of the HMM and M is the length of the input sequence length. The main challenge in implementing the Plan7 Viterbi algorithm on the novel Cell/B.E. multiprocessor is the limited local storage space of the Cell/B.E. SPEs (synergistic processing element). We describe our approach to modifying the Viterbi algorithm to reduce the space complexity from 0(M*N) to O(N). We then proceed to discuss design considerations such as task parallelization and code partitioning, in addition to other optimizations we used to implement HMMer-Cell. We demonstrate near-linear speedup when processing relatively larger HMM profiles; and compare our results to those obtained on commodity x86 processors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HMMer-Cell:基于细胞/B.E.的高效蛋白质图谱搜索处理器
本文介绍了计算密集型生物信息学应用HMMER -Cell在Cell/B.E.上的实现多处理器体系结构。HMM工作负载的核心是Plan7 Viterbi算法,该算法的内存需求为O(N*M),其中N为HMM的长度,M为输入序列长度。在新型Cell/B.E.上实现Plan7 Viterbi算法的主要挑战多处理器是Cell/B.E.有限的本地存储空间spe(协同处理元素)。我们描述了修改Viterbi算法以将空间复杂度从0(M*N)降低到O(N)的方法。然后,除了用于实现hmm - cell的其他优化之外,我们还将继续讨论诸如任务并行化和代码分区等设计注意事项。当处理相对较大的HMM剖面时,我们证明了近似线性的加速;并将我们的结果与在商用x86处理器上获得的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scientific Computing Applications on a Stream Processor HMMer-Cell: High Performance Protein Profile Searching on the Cell/B.E. Processor Dynamic Thermal Management through Task Scheduling Program Phase Detection based on Critical Basic Block Transitions Trace-based Performance Analysis on Cell BE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1