{"title":"Robust Deep Reinforcement Learning for Interference Avoidance in Wideband Spectrum","authors":"Mohamed A. Aref, S. Jayaweera","doi":"10.1109/CCAAW.2019.8904887","DOIUrl":null,"url":null,"abstract":"This paper presents a design of a cognitive engine for interference and jamming resilience based on deep reinforcement learning (DRL). The proposed scheme is aimed at finding the spectrum opportunities in a heterogeneous wideband spectrum. In this paper we discuss a specific DRL mechanism based on double deep Q-learning (DDQN) with a convolutional neural network (CNN) to successfully learn such interference avoidance operation over a wideband partially observable environment. It is shown, through simulations, that the proposed technique has a low computational complexity and significantly outperforms other techniques in the literature, including other DRL-based approaches.","PeriodicalId":196580,"journal":{"name":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAAW.2019.8904887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents a design of a cognitive engine for interference and jamming resilience based on deep reinforcement learning (DRL). The proposed scheme is aimed at finding the spectrum opportunities in a heterogeneous wideband spectrum. In this paper we discuss a specific DRL mechanism based on double deep Q-learning (DDQN) with a convolutional neural network (CNN) to successfully learn such interference avoidance operation over a wideband partially observable environment. It is shown, through simulations, that the proposed technique has a low computational complexity and significantly outperforms other techniques in the literature, including other DRL-based approaches.