Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders

M. Asres, G. Cummings, A. Khukhunaishvili, P. Parygin, S. Cooper, D. Yu, J. Dittmann, C. Omlin
{"title":"Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders","authors":"M. Asres, G. Cummings, A. Khukhunaishvili, P. Parygin, S. Cooper, D. Yu, J. Dittmann, C. Omlin","doi":"10.36001/phme.2022.v7i1.3367","DOIUrl":null,"url":null,"abstract":"Predictive maintenance is essential for complex industrial systems to foresee anomalies before major system faults or ultimate breakdown. However, the existing efforts on Industry 4.0 predictive monitoring are directed at semi-supervised anomaly detection with limited robustness for large systems, which are often accompanied by uncleaned and unlabeled data. We address the challenge of predicting anomalies through data-driven end-to-end deep learning models using early warning symptoms on multivariate time series sensor data. We introduce AnoP, a long multi-timestep anomaly prediction system based on unsupervised attention-based causal residual networks, to raise alerts for anomaly prevention. The experimental evaluation on large data sets from detector health monitoring of the Hadron Calorimeter of the CMS Experiment at LHC CERN demonstrates the promising efficacy of the proposed approach. AnoP predicted around 60% of the anomalies up to seven days ahead, and the majority of the missed anomalies are abnormalities with unpredictable noisy-like behavior. Moreover, it has discovered previously unknown anomalies in the calorimeter’s sensors.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predictive maintenance is essential for complex industrial systems to foresee anomalies before major system faults or ultimate breakdown. However, the existing efforts on Industry 4.0 predictive monitoring are directed at semi-supervised anomaly detection with limited robustness for large systems, which are often accompanied by uncleaned and unlabeled data. We address the challenge of predicting anomalies through data-driven end-to-end deep learning models using early warning symptoms on multivariate time series sensor data. We introduce AnoP, a long multi-timestep anomaly prediction system based on unsupervised attention-based causal residual networks, to raise alerts for anomaly prevention. The experimental evaluation on large data sets from detector health monitoring of the Hadron Calorimeter of the CMS Experiment at LHC CERN demonstrates the promising efficacy of the proposed approach. AnoP predicted around 60% of the anomalies up to seven days ahead, and the majority of the missed anomalies are abnormalities with unpredictable noisy-like behavior. Moreover, it has discovered previously unknown anomalies in the calorimeter’s sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于因果自编码器的多元时间序列长视界异常预测
对于复杂的工业系统来说,预测性维护在主要系统故障或最终故障之前预见异常是必不可少的。然而,工业4.0预测监测的现有工作主要针对半监督异常检测,对于大型系统的鲁棒性有限,这些系统通常伴随着未清理和未标记的数据。我们通过数据驱动的端到端深度学习模型,利用多变量时间序列传感器数据的早期预警症状,解决了预测异常的挑战。我们引入了一种基于无监督的基于注意的因果残差网络的长时间多步异常预测系统AnoP,以发出异常警报以预防异常。对欧洲核子研究中心LHC强子量热仪探测器健康监测大数据集的实验评估表明,该方法具有良好的效果。AnoP可以提前7天预测60%左右的异常,而大多数未被发现的异常都带有不可预测的噪音行为。此外,它还在热量计的传感器中发现了以前未知的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Certainty Groups: A Practical Approach to Distinguish Confidence Levels in Neural Networks Domain Knowledge Informed Unsupervised Fault Detection for Rolling Element Bearings Novel Methodology for Health Assessment in Printed Circuit Boards On the Integration of Fundamental Knowledge about Degradation Processes into Data-Driven Diagnostics and Prognostics Using Theory-Guided Data Science Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1