Recognizing surgically altered faces using local edge gradient Gabor magnitude pattern

Chollette C. Olisah, Peter Ogedebe
{"title":"Recognizing surgically altered faces using local edge gradient Gabor magnitude pattern","authors":"Chollette C. Olisah, Peter Ogedebe","doi":"10.1109/ISSA.2016.7802937","DOIUrl":null,"url":null,"abstract":"For humans, every face is unique and can be recognized amongst similar faces. This is yet to be so for machines. Our assumption is that beneath the uncertain primitive visual features of face images are intrinsic structural patterns that uniquely distinguish a sample face from those of other faces. In order to unlock the intrinsic structural patterns, this paper presents in a typical face recognition framework a new descriptor, namely the local edge gradient Gabor magnitude (LEGGM) descriptor. LEGGM first of all uncovers the primitive inherent structural pattern (PISP) locked in every pixel through determining the pixel gradient in relation to its neighbors. Then, the resulting output is embedded in the pixel original (grey-level) pattern using additive function. This forms a pixel's complete structural pattern, which is further encoded using Gabor wavelets to encode the frequency characteristics of the resulting pattern. From these steps emerges an efficient descriptor for describing every pixel point in a face image. The proposed descriptor-based face recognition method shows impressive results over contemporary descriptors on the Plastic surgery database despite using a base classifier and without employing subspace learning. The ability of the descriptor to be adapted to real-world face recognition scenario is demonstrated by running experiments with a heterogeneous database.","PeriodicalId":330340,"journal":{"name":"2016 Information Security for South Africa (ISSA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Information Security for South Africa (ISSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSA.2016.7802937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For humans, every face is unique and can be recognized amongst similar faces. This is yet to be so for machines. Our assumption is that beneath the uncertain primitive visual features of face images are intrinsic structural patterns that uniquely distinguish a sample face from those of other faces. In order to unlock the intrinsic structural patterns, this paper presents in a typical face recognition framework a new descriptor, namely the local edge gradient Gabor magnitude (LEGGM) descriptor. LEGGM first of all uncovers the primitive inherent structural pattern (PISP) locked in every pixel through determining the pixel gradient in relation to its neighbors. Then, the resulting output is embedded in the pixel original (grey-level) pattern using additive function. This forms a pixel's complete structural pattern, which is further encoded using Gabor wavelets to encode the frequency characteristics of the resulting pattern. From these steps emerges an efficient descriptor for describing every pixel point in a face image. The proposed descriptor-based face recognition method shows impressive results over contemporary descriptors on the Plastic surgery database despite using a base classifier and without employing subspace learning. The ability of the descriptor to be adapted to real-world face recognition scenario is demonstrated by running experiments with a heterogeneous database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用局部边缘梯度Gabor幅度模式识别手术改变的面部
对于人类来说,每张脸都是独一无二的,可以在相似的脸中被识别出来。对于机器来说,这还没有实现。我们的假设是,在人脸图像不确定的原始视觉特征之下,存在着内在的结构模式,这些结构模式独特地将样本人脸与其他人脸区分开来。为了解开固有的结构模式,本文在典型的人脸识别框架中提出了一种新的描述子,即局部边缘梯度Gabor幅度(LEGGM)描述子。LEGGM首先通过确定像素相对于其邻居的梯度来揭示锁定在每个像素中的原始固有结构模式(PISP)。然后,使用加性函数将结果输出嵌入到像素原始(灰度)模式中。这形成了一个像素的完整结构模式,使用Gabor小波进一步编码产生的模式的频率特征。从这些步骤中产生一个有效的描述符来描述人脸图像中的每个像素点。提出的基于描述符的人脸识别方法在整形外科数据库上显示了令人印象深刻的结果,尽管使用了基本分类器并且没有使用子空间学习。通过在异构数据库中运行实验,证明了描述符适应现实世界人脸识别场景的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PoPI Act - opt-in and opt-out compliance from a data value chain perspective: A South African insurance industry experiment CDMA in signal encryption and information security Specific emitter identification for enhanced access control security Recognizing surgically altered faces using local edge gradient Gabor magnitude pattern Context Aware Mobile Application for mobile devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1