Faster OMP computations by sensing matrix column reduction

F. C. Akyon, Gokhan Gok, Y. K. Alp
{"title":"Faster OMP computations by sensing matrix column reduction","authors":"F. C. Akyon, Gokhan Gok, Y. K. Alp","doi":"10.1109/SIU.2017.7960585","DOIUrl":null,"url":null,"abstract":"Compressed sensing is an emerging technique that allows to reconstruct sparse signals sampled at sub-Nyquist rates. However, it requires high computational effort to reconstruct the compressively sampled signal, which makes real-time application of it very hard. We therefore, present a novel, generic method that decreases the computational complexity of Orthogonal Matehing Pursuit (OMP) like reconstruction algorithms that exploit the correlation of columns of a dictionary (sensing matrix). The proposed method reduces the column number of the dictionary in a systematic manner to speed up the correlation calculations. Simulation results show that in sparse scenarios, reconstruction speed increases significantiy with a negligible decrease in the reconstruction accuracy.","PeriodicalId":409299,"journal":{"name":"Signal Processing and Communications Applications Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compressed sensing is an emerging technique that allows to reconstruct sparse signals sampled at sub-Nyquist rates. However, it requires high computational effort to reconstruct the compressively sampled signal, which makes real-time application of it very hard. We therefore, present a novel, generic method that decreases the computational complexity of Orthogonal Matehing Pursuit (OMP) like reconstruction algorithms that exploit the correlation of columns of a dictionary (sensing matrix). The proposed method reduces the column number of the dictionary in a systematic manner to speed up the correlation calculations. Simulation results show that in sparse scenarios, reconstruction speed increases significantiy with a negligible decrease in the reconstruction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
更快的OMP计算通过传感矩阵列减少
压缩感知是一种新兴的技术,它允许以亚奈奎斯特速率重建稀疏信号。但是,对压缩采样信号进行重构需要大量的计算量,这给实时应用带来了很大的困难。因此,我们提出了一种新颖的通用方法,可以降低正交匹配追踪(OMP)的计算复杂度,例如利用字典(感知矩阵)列之间的相关性的重建算法。该方法系统地减少了字典的列数,加快了相关计算的速度。仿真结果表明,在稀疏场景下,重构速度显著提高,而重构精度的降低可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Under-sampling on the Performance of Bootstrap-based Ensemble Feature Selection An ontology based semantic representation for Turkish Cuisine Feasibility of applying pattern search optimization to optical couplers Faster OMP computations by sensing matrix column reduction Enerji hasatçı ve batarya kısıtlı bir sensör ile en taze veri güncellemelerinin gönderilmesi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1