A Codesign Framework for Online Data Analysis and Reduction

Kshitij Mehta, Ian T Foster, S. Klasky, B. Allen, M. Wolf, Jeremy S. Logan, E. Suchyta, J. Choi, Keichi Takahashi, I. Yakushin, T. Munson
{"title":"A Codesign Framework for Online Data Analysis and Reduction","authors":"Kshitij Mehta, Ian T Foster, S. Klasky, B. Allen, M. Wolf, Jeremy S. Logan, E. Suchyta, J. Choi, Keichi Takahashi, I. Yakushin, T. Munson","doi":"10.1109/WORKS49585.2019.00007","DOIUrl":null,"url":null,"abstract":"In this paper we discuss our design of a toolset for automating performance studies of composed HPC applications that perform online data reduction and analysis. We describe Cheetah, a new framework for performing parametric studies on coupled applications. Cheetah facilitates understanding the impact of various factors such as process placement, synchronicity of algorithms, and storage vs. compute requirements for online analysis of large data. Ultimately, we aim to create a catalog of performance results that can help scientists understand tradeoffs when designing next-generation simulations that make use of online processing techniques. We illustrate the design choices of Cheetah by using a reaction-diffusion simulation (Gray-Scott) paired with an analysis application to demonstrate initial results of fine-grained process placement on Summit, a pre-exascale supercomputer at Oak Ridge National Laboratory.","PeriodicalId":436926,"journal":{"name":"2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORKS49585.2019.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we discuss our design of a toolset for automating performance studies of composed HPC applications that perform online data reduction and analysis. We describe Cheetah, a new framework for performing parametric studies on coupled applications. Cheetah facilitates understanding the impact of various factors such as process placement, synchronicity of algorithms, and storage vs. compute requirements for online analysis of large data. Ultimately, we aim to create a catalog of performance results that can help scientists understand tradeoffs when designing next-generation simulations that make use of online processing techniques. We illustrate the design choices of Cheetah by using a reaction-diffusion simulation (Gray-Scott) paired with an analysis application to demonstrate initial results of fine-grained process placement on Summit, a pre-exascale supercomputer at Oak Ridge National Laboratory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联机数据分析与简化的协同设计框架
在本文中,我们讨论了我们设计的一个工具集,用于自动研究执行在线数据缩减和分析的组合HPC应用程序的性能。我们描述了Cheetah,一个在耦合应用中进行参数化研究的新框架。Cheetah有助于理解各种因素的影响,例如进程布局、算法的同步性以及在线大数据分析的存储与计算需求。最终,我们的目标是创建一个性能结果目录,可以帮助科学家在设计利用在线处理技术的下一代模拟时了解权衡。我们通过使用反应扩散模拟(Gray-Scott)和分析应用程序来说明Cheetah的设计选择,以演示在橡树岭国家实验室的前百亿次超级计算机Summit上细粒度过程放置的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Codesign Framework for Online Data Analysis and Reduction On a Parallel Spark Workflow for Frequent Itemset Mining Based on Array Prefix-Tree A Top-Down Performance Analysis Methodology for Workflows: Tracking Performance Issues from Overview to Individual Operations Comparing GPU Power and Frequency Capping: A Case Study with the MuMMI Workflow Provenance Data in the Machine Learning Lifecycle in Computational Science and Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1