A comparison of subspace methods for accurate position measurement

J. Fortuna, P. Quick, D. Capson
{"title":"A comparison of subspace methods for accurate position measurement","authors":"J. Fortuna, P. Quick, D. Capson","doi":"10.1109/IAI.2004.1300936","DOIUrl":null,"url":null,"abstract":"A comparison of the accuracy of visual position measurement in four common subspaces is presented. Principal component analysis (PCA), independent component analysis (ICA), kernel principal component analysis (KPCA) and Fisher's linear discriminant (FLD) are examined for their ability to discriminate positions in a 2D visual subspace. The comparison was done with both constant and varying illumination and random occlusion. It is shown that PCA provides very good overall performance compared with more sophisticated techniques such as ICA, FLD, and KPCA, at a reduced computational complexity.","PeriodicalId":326040,"journal":{"name":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","volume":"329 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2004.1300936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A comparison of the accuracy of visual position measurement in four common subspaces is presented. Principal component analysis (PCA), independent component analysis (ICA), kernel principal component analysis (KPCA) and Fisher's linear discriminant (FLD) are examined for their ability to discriminate positions in a 2D visual subspace. The comparison was done with both constant and varying illumination and random occlusion. It is shown that PCA provides very good overall performance compared with more sophisticated techniques such as ICA, FLD, and KPCA, at a reduced computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精确位置测量的子空间方法比较
对四种常用子空间的视觉位置测量精度进行了比较。研究了主成分分析(PCA)、独立成分分析(ICA)、核主成分分析(KPCA)和Fisher线性判别法(FLD)在二维视觉子空间中判别位置的能力。在恒定和变化光照和随机遮挡下进行了比较。结果表明,与ICA、FLD和KPCA等更复杂的技术相比,PCA在降低计算复杂度的情况下提供了非常好的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Color interpolation for single CCD color camera A spatially selective filter based on the undecimated wavelet transform that is robust to noise estimation error Partially observed objects localization with PCA and KPCA models Multi-resolution volumetric reconstruction using labeled regions Frequency implementation of discrete wavelet transforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1